Значение пи на 6 на окружности

Как обозначать числа с пи на числовой окружности?

Надеюсь, вы уже прочитали про числовую окружность и знаете, почему она называется числовой, где на ней начало координат и в какой стороне положительное направление. Если нет, то бегом читать ! Если вы, конечно, собираетесь находить точки на числовой окружности.

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Обозначаем числа (2π), (π), (frac), (-frac), (frac)

Как вы знаете из прошлой статьи, радиус числовой окружности равен (1). Значит, длина окружности равняется (2π) (вычислили по формуле (l=2πR)). С учетом этого отметим (2π) на числовой окружности. Чтобы отметить это число нужно пройти от (0) по числовой окружности расстояние равно (2π) в положительном направлении, а так как длина окружности (2π), то получается, что мы сделаем полный оборот. То есть, числу (2π) и (0) соответствует одна и та же точка. Не переживайте, несколько значений для одной точки — это нормально для числовой окружности.

Значение пи на 6 на окружности

Теперь обозначим на числовой окружности число (π). (π) – это половина от (2π). Таким образом, чтобы отметить это число и соответствующую ему точку, нужно пройти от (0) в положительном направлении половину окружности.

Значение пи на 6 на окружности

Отметим точку (frac) . (frac) – это половина от (π), следовательно чтобы отметить это число, нужно от (0) пройти в положительном направлении расстояние равное половине (π), то есть четверть окружности.

Значение пи на 6 на окружности

Обозначим на окружности точки (-) (frac) . Двигаемся на такое же расстояние, как в прошлый раз, но в отрицательном направлении.

Значение пи на 6 на окружности

Нанесем (-π). Для этого пройдем расстояние равное половине окружности в отрицательном направлении.

Значение пи на 6 на окружности

Теперь рассмотрим пример посложнее. Отметим на окружности число (frac) . Для этого дробь (frac) переведем в смешанный вид (frac) (=1) (frac) , т.е. (frac) (=π+) (frac) . Значит, нужно от (0) в положительную сторону пройти расстояние в пол окружности и еще в четверть.

Значение пи на 6 на окружности

Задание 1. Отметьте на числовой окружности точки (-2π),(-) (frac) .

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Обозначаем числа (frac), (frac), (frac)

Выше мы нашли значения в точках пересечения числовой окружности с осями (x) и (y). Теперь определим положение промежуточных точек. Для начала нанесем точки (frac) , (frac) и (frac) .
(frac) – это половина от (frac) (то есть, (frac) (=) (frac) (:2)) , поэтому расстояние (frac) – это половина четверти окружности.

Значение пи на 6 на окружности

(frac) – это треть от (π) (иначе говоря, (frac) (=π:3)), поэтому расстояние (frac) – это треть от полукруга.

Значение пи на 6 на окружности

(frac) – это половина (frac) (ведь (frac) (=) (frac) (:2)) поэтому расстояние (frac) – это половина от расстояния (frac) .

Значение пи на 6 на окружности

Вот так они расположены друг относительно друга:

Значение пи на 6 на окружности

Замечание: Расположение точек со значением (0), (frac) ,(π), (frac) , (frac) , (frac) , (frac) лучше просто запомнить. Без них числовая окружность, как компьютер без монитора, вроде бы и полезная штука, а использовать крайне неудобно.

Разные расстояние на окружности наглядно:

Значение пи на 6 на окружностиЗначение пи на 6 на окружности

Значение пи на 6 на окружности Значение пи на 6 на окружности

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Обозначаем числа (frac), (-frac), (frac)

Обозначим на окружности точку (frac) , для этого выполним следующие преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=π+) (frac) . Отсюда видно, что от нуля в положительную сторону надо пройти расстояние (π), а потом еще (frac) .

Значение пи на 6 на окружности

Отметим на окружности точку (-) (frac) . Преобразовываем: (-) (frac) (=-) (frac) (-) (frac) (=-π-) (frac) . Значит надо от (0) пройти в отрицательную сторону расстояние (π) и еще (frac) .

Значение пи на 6 на окружности

Нанесем точку (frac) , для этого преобразуем (frac) (=) (frac) (=) (frac) (-) (frac) (=2π-) (frac) . Значит, чтобы поставить точку со значением (frac) , надо от точки со значением (2π) пройти в отрицательную сторону расстояние (frac) .

Значение пи на 6 на окружности

Видео:Число Пи-здесь. Объяснение математического смысла.Скачать

Число Пи-здесь. Объяснение математического смысла.

Обозначаем числа (10π), (-3π), (frac) ,(frac), (-frac), (-frac)

Запишем (10π) в виде (5 cdot 2π). Вспоминаем, что (2π) – это расстояние равное длине окружности, поэтому чтобы отметить точку (10π), нужно от нуля пройти расстояние равное (5) окружностям. Нетрудно догадаться, что мы окажемся снова в точке (0), просто сделаем пять оборотов.

Значение пи на 6 на окружности

Из этого примера можно сделать вывод:

Числам с разницей в (2πn), где (n∈Z) (то есть (n) — любое целое число) соответствует одна и та же точка.

То есть, чтобы поставить число со значением больше (2π) (или меньше (-2π)), надо выделить из него целое четное количество (π) ((2π), (8π), (-10π)…) и отбросить. Тем самым мы уберем из числа, не влияющие на положение точки «пустые обороты».

Точке, которой соответствует (0), также соответствуют все четные количества (π) ((±2π),(±4π),(±6π)…).

Теперь нанесем на окружность (-3π). (-3π=-π-2π), значит (-3π) и (–π) находятся в одном месте на окружности (так как отличаются на «пустой оборот» в (-2π)).

Значение пи на 6 на окружности

Кстати, там же будут находиться все нечетные (π).

Точке, которой соответствует (π), также соответствуют все нечетные количества (π) ((±π),(±3π),(±5π)…).

Сейчас обозначим число (frac) . Как обычно, преобразовываем: (frac) (=) (frac) (+) (frac) (=3π+) (frac) (=2π+π+) (frac) . Два пи – отбрасываем, и получается что, для обозначения числа (frac) нужно от нуля в положительную сторону пройти расстояние равное (π+) (frac) (т.е. половину окружности и еще четверть).

Значение пи на 6 на окружности

Отметим (frac) . Вновь преобразования: (frac) (=) (frac) (=) (frac) (+) (frac) (=5π+) (frac) (=4π+π+) (frac) . Ясно, что от нуля надо пройти расстояние равное (π+) (frac) – и мы найдем место точки (frac) .

Значение пи на 6 на окружности

Нанесем на окружность число (-) (frac) .
(-) (frac) (= -) (frac) (-) (frac) (=-10π-) (frac) . Значит, место (-) (frac) совпадает с местом числа (-) (frac) .

Значение пи на 6 на окружности

Обозначим (-) (frac) .
(-) (frac) (=-) (frac) (+) (frac) (=-5π+) (frac) (=-4π-π+) (frac) . Для обозначение (-) (frac) , на числовой окружности надо от точки со значением (–π) пройти в положительную сторону (frac) .

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Значение пи на 6 на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Окружность и круг, 6 классСкачать

    Окружность и круг, 6 класс

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Как искать точки на тригонометрической окружности.Скачать

    Как искать точки на тригонометрической окружности.

    Число Пи — это математическая постоянная

    Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Сегодня мы подробно расскажем, что такое число «пи», которое частенько используется в математике.

    На самом деле, это постоянная величина, которая помогала еще древним Египтянам проводить расчеты при проектировании. Она, например, позволяла, зная диаметр окружности, легко рассчитать ее длину (периметр).

    Значение пи на 6 на окружности

    Но вот только значение этой постоянной в те времена точно рассчитать не получалось. Сегодня же мы можем узнать чему равно число ПИ вплоть до триллионного знака после запятой.

    Видео:Длина окружности. Площадь круга, 6 классСкачать

    Длина окружности. Площадь круга, 6 класс

    Что такое число Пи

    Впервые школьники сталкиваются с этим понятием еще в 3-м классе, когда начинают изучать окружность (что это?).

    Им просто говорят, что какую бы окружность они не нарисовали, если поделить ее длину на диаметр, то получится одно и то же число. И называется это число «пи», обозначается латинской буквой «π» и равно 3,14.

    Кстати, именно так и звучит официальное определение числа «пи»:

    Пи – это математическая константа (постоянная), которая равна отношению длины окружности к ее диаметру.

    А вот в 6-м классе школьников ближе знакомят с этим числом. Именно тогда начинают изучать формулы длины и площади окружности. А в них без «пи» не обойтись:

    Значение пи на 6 на окружности

    Видео:Как π чуть не стало 6,283185... [3Blue1Brown]Скачать

    Как π чуть не стало 6,283185... [3Blue1Brown]

    История возникновения числа «пи»

    Ученые считают, что еще в Древнем Египте знали о существовании некой математической постоянной. Этот вывод сделали на основании папирусов, на которых расписаны вычисления площади круга. И в ней фигурировало некое число, которое равнялось 3,160.

    Но число, напоминающее «пи» встречается и в других странах:

    1. В Древней Индии в документах VI века до нашей эры есть указание, что «пи» равно квадратному корню из 10, а это примерно 3,162;
    2. Архимед в Древней Греции (III век до нашей эры) написал, что соотношение длины окружности к ее диаметру лежит между дробями 3 1/7 и 3 10/71, а это равно 3, 141592;
    3. Китайский математик Цзу Чунчжи получил точно такое же число, но с более точными цифрами до 7-го знака после запятой.
    4. Британский математик Уильям Джонс впервые ввел само название «пи» в 1706 году.

    Эта греческая буква взята неслучайно, она первая в словах «περιφέρεια» (окружность) и «περίμετρος» (периметр).

    Значение пи на 6 на окружности

    И наконец, общепринятым понятие «математической постоянной» стало в 1737 году после публикации научных работ Леонардо Эйлера.

    Видео:Вычисление значений тригонометрических функцийСкачать

    Вычисление значений тригонометрических функций

    Чему равно число Пи

    Количество знаков после запятой у числа «пи» бесконечно.

    Во всяком случае, ни один компьютер (это что?) до сих пор так и не смог вычислить их до конца. Самая современная вычислительная машина смогла показать лишь 10 триллионов цифр.

    И что наиболее любопытно, в этом огромном количестве цифр нет никакой зависимости или тенденции. Математики очень любят разбивать знаки после запятой на группы по 10 цифр. И вот среди этих групп у числа «пи» невозможно найти две одинаковые.

    На рисунке ниже приведено значение числа Пи с точностью до 1000 знаков после запятой:

    Значение пи на 6 на окружности

    Видео:Марафон на тему: «Тригонометрия: задания 6 и 13»Скачать

    Марафон на тему: «Тригонометрия: задания 6 и 13»

    Число «пи» в фольклоре

    Чтобы запомнить побольше знаков числа «пи» люди пользуются разными приемами мнемотехники.

    Например, есть такие стихотворения:

    Чтобы нам не ошибиться,
    Надо правильно прочесть.
    Три, четырнадцать, пятнадцать.
    Девяносто два и шесть.

    А есть специальные стихи, в которых числа определяются по количеству букв в словах:

    Это(3) я(1) знаю(4) и(1) помню(5) прекрасно(9).
    Пи(2) многие(6) знаки(5) мне(3) лишни(5), напрасны(8).
    Доверимся(9) знаньям(7) громадным(9)
    Тех(3), пи(2) кто(3) сосчитал(8), цифр(4) армаду(6).

    Называние «пи» присутствует и в нескольких фильмах. Например, в 1998 году режиссер Даррен Аронофски снял картину «Пи». Это психологический триллер, в котором главный герой считает, что все в жизни можно описать с помощью чисел. Но в результате он чуть не сошел с ума.

    Значение пи на 6 на окружности

    А в 2012 году на экраны вышел фильм «Жизнь Пи». Он, правда, не имеет ничего общего с математикой. Это приключенческая лента о путешествиях индийского юноши по имени Пи.

    С 1987 году математики даже отмечают День числа «пи». Происходит это 14 марта, так энтузиасты обыграли первые цифры (3,14). А начало торжеств приходится на определенное время – 01:59. Это также дань цифрам, которые идут после запятой.

    Празднования проходят, как правило, скромно. Люди просто готовят круглый торт, садятся за круглый стол и делятся забавными историями, связанными с числом «пи» и математическими задачками в целом.

    И наконец, есть даже анекдоты на тему числа «пи». Один из таких звучит так:

    Один ученый спрашивает другого:
    — Скажи, а почему рельсы прямые, колеса круглые, а когда поезд едет, то они стучат?
    — Ну, это просто. Колеса же круглые. А значит, их площадь равна «пи эр квадрат». Вот тот самый квадрат и стучит.

    Вот и все, что мы хотели рассказать о числе «пи». До новых встреч на страницах нашего блога.

    Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

    Эта статья относится к рубрикам:

    Комментарии и отзывы (3)

    Приведенное выше число пи не точное (приближенное)

    ТОчное значение этого числа 3,14269680. Это доказано в статье «Через центр масс квадранта к числу пи» см. в Инете

    Самое забавное, что мы не можем вычислить точную площадь круга, именно потому что число Пи бесконечно.

    Вроде бы Архимед нашел свое число Пи следующим образом, он брал два многоугольника, один был вписан в окружность, а сама окружность была вписана во второй многоугольник, затем он находил периметры этих двух многоугольников и брал их отношение, потом он увеличивал количество сторон этих многоугольников и они все больше становились похожи на окружность, так он и получил наиболее точное значение своего числа.

    Да зачем нужны эти триллионы после запятой? Вот учёным делать нечего, всё равно погрешность изготовления окружности будет выше этой точности.

    🎥 Видео

    Длина окружности. Математика 6 класс.Скачать

    Длина окружности. Математика 6 класс.

    Что такое число Пи? Кто его изобрел и почему оно так важноСкачать

    Что такое число Пи?  Кто его изобрел и почему оно так важно

    Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать

    Длина окружности. Практическая часть - решение задачи. 6 класс.

    МЕРЗЛЯК-6. ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА. ПАРАГРАФ-25Скачать

    МЕРЗЛЯК-6. ДЛИНА ОКРУЖНОСТИ. ПЛОЩАДЬ КРУГА. ПАРАГРАФ-25

    ОКРУЖНОСТЬ И КРУГ // ДЛИНА ОКРУЖНОСТИ // ЧИСЛО ПИСкачать

    ОКРУЖНОСТЬ И КРУГ // ДЛИНА ОКРУЖНОСТИ // ЧИСЛО ПИ

    ЧИСЛО БОГА, УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ [Число ПИ и Скатерть Улама]Скачать

    ЧИСЛО БОГА, УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ [Число ПИ и Скатерть Улама]

    Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)Скачать

    Математика 6 класс (Урок№76 - Длина окружности. Площадь круга.)

    Тригонометрия. Начало. Число ПИ и единичная окружность.Скачать

    Тригонометрия. Начало. Число ПИ и единичная окружность.

    Что означает число Пи?Скачать

    Что означает число Пи?
    Поделиться или сохранить к себе: