- Онлайн калькулятор
- Как посчитать длину окружности зная диаметр
- Формула
- Пример
- Как посчитать длину окружности зная радиус
- Формула
- Пример
- Как посчитать длину окружности зная её площадь
- Формула
- Пример
- Длина окружности
- Как найти длину окружности через диаметр
- Как найти длину окружности через радиус
- Как вычислить длину окружности через площадь круга
- Как найти длину окружности через диагональ вписанного прямоугольника
- Как вычислить длину окружности через сторону описанного квадрата
- Как найти длину окружности через стороны и площадь вписанного треугольника
- Как найти длину окружности через площадь и полупериметр описанного треугольника
- Как вычислить длину окружности через сторону вписанного правильного многоугольника
- Задачи для решения
- Урок 25 Бесплатно Длина окружности и площадь круга
- Окружность и круг
- Длина окружности и площадь круга
- Решения задач по теме «Длина окружности и площадь круга»
- 🔍 Видео
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Онлайн калькулятор
Как посчитать длину окружности зная диаметр
Какая длина у окружности если
Какова длина окружности (С) если её диаметр d?
Формула
С = π⋅d , где π ≈ 3.14
Пример
Если диаметр круга равен 1 см, то его длина примерно равна 3.14 см.
Как посчитать длину окружности зная радиус
Какая длина у окружности если
Какова длина окружности (С) если её радиус r?
Формула
С = 2⋅π⋅r , где π ≈ 3.14
Пример
Если радиус круга равен 0.5 см, то его длина примерно равна 3.14 см.
Как посчитать длину окружности зная её площадь
Какая длина у окружности если
Какова длина окружности (С) если её площадь S?
Формула
С = 2π⋅ √ S /π , где π ≈ 3.14
Пример
Если площадь круга равна 6 см 2 , то его длина примерно равна 8.68 см.
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Длина окружности
О чем эта статья:
6 класс, 9 класс, ЕГЭ/ОГЭ
Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Видео:Длина окружности. Математика 6 класс.Скачать
Как найти длину окружности через диаметр
Хорда — это отрезок, который соединяет две точки окружности.
Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:
π— число пи — математическая константа, примерно равная 3,14
d — диаметр окружности
Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать
Как найти длину окружности через радиус
Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:
π — число пи, примерно равное 3,14
r — радиус окружности
Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Как вычислить длину окружности через площадь круга
Если вам известна площадь круга, вы также можете узнать длину окружности:
π — число пи, примерно равное 3,14
S — площадь круга
Видео:Математика 3 класс (Урок№33 - Круг. Окружность (центр, радиус, диаметр)Скачать
Как найти длину окружности через диагональ вписанного прямоугольника
Как измерить окружность, если в нее вписан прямоугольник:
π — число пи, примерно равное 3,14
d — диагональ прямоугольника
Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать
Как вычислить длину окружности через сторону описанного квадрата
Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:
π — математическая константа, примерно равная 3,14
a — сторона квадрата
Видео:Радиус и диаметрСкачать
Как найти длину окружности через стороны и площадь вписанного треугольника
Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:
π — математическая константа, она примерно равна 3,14
a — первая сторона треугольника
b — вторая сторона треугольника
c — третья сторона треугольника
S — площадь треугольника
Видео:Окружность и круг, 6 классСкачать
Как найти длину окружности через площадь и полупериметр описанного треугольника
Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.
Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.
π — математическая константа, примерно равная 3,14
S — площадь треугольника
p — полупериметр треугольника
Видео:+Как найти длину окружностиСкачать
Как вычислить длину окружности через сторону вписанного правильного многоугольника
Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.
Формула вычисления длины окружности:
π — математическая константа, примерно равная 3,14
a — сторона многоугольника
N — количество сторон многоугольника
Видео:Длина окружности. Площадь круга, 6 классСкачать
Задачи для решения
Давайте тренироваться! Двигаемся от простого к сложному:
Задача 1. Найти длину окружности, диаметр которой равен 5 см.
Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:
Подставляем туда известные переменные и получается, что длина окружности равна
Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм
Решение. Радиус окружности равен Подставим туда наши переменные и получим
Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.
Обучение на курсах по математике поможет закрепить полученные знания на практике.
Видео:Длина окружности. Практическая часть - решение задачи. 6 класс.Скачать
Урок 25 Бесплатно Длина окружности и площадь круга
На этом уроке мы рассмотрим одни из самых древнейших геометрических фигур: окружность и круг.
Определим, какими элементами характеризуются круг и окружность, в чем сходство и различие этих фигур.
Узнаем, как рассчитать длину окружности и площадь круга.
Видео:Круг. Окружность (центр, радиус, диаметр)Скачать
Окружность и круг
Мы часто встречаем такие понятия, как окружность и круг.
Давайте попробуем разобраться, что называют окружностью, а что кругом.
Окружность — это замкнутая плоская кривая, все точки которой удалены на одинаковые расстояния от заданной точки, называемой центром окружности.
Центр окружности— это точка, которая находится на одинаковом расстоянии (равноудаленная) от любой точки окружности, ее обозначают обычно заглавной буквой О.
По сути, окружность — это изогнутая линия. Наглядно представить данную геометрическую фигуру можно, обведя стакан или блюдце карандашом, — оставшийся нарисованный след и будет окружностью.
Круг — это часть плоскости, ограниченная окружностью. Можно также сказать что это часть плоскости, которая находится внутри линии окружности.
Круг — плоская фигура, ее можно получить, закрасив окружность или вырезав его из бумаги по контуру окружности.
Свои имена окружность и круг приобрели не сразу.
В древние времена специальных названий для этих фигур не существовало. Люди пытались описать различные геометрические формы, сравнивая объекты. Например, говоря про что-то круглое, говорили: «такой, как солнце» или «такой, как орех» и т.п.
Только в Древней Греции окружность и круг приобрели себе свои названия.
Круг всегда привлекал к себе внимание как самая простая фигура из кривых, но самая загадочная.
У меня есть дополнительная информация к этой части урока!
Древние греки считали круг и окружность символом бесконечности и совершенства. Поражало то, что в каждой своей точке окружность устроена одинаково, представляя собой бесконечную линию, которая движется сама по себе.
У древних славян еще за долго до христианства круг был символом солнца.
В Древнем Египте и Греции круг изображали в виде змея Уробороса, который кусает свой хвост, образуя тем самым, окружность — этот символ обозначал бесконечность и цикличность во всей вселенной (смена дня и ночи, жизни и смерти т.д.).
Символика круга в различных религиях сопоставляется с целостностью, вечностью и бесконечной мудростью.
Например, в масонских учениях круг как форма без начала и конца — это источник бесконечного времени и пространства, в котором заключена тайна творения.
У буддистов круг символизирует единство внутреннего и внешнего мира.
В дзен-буддизме круг — это символ высшей степени просветления и совершенства. На основе этого представления построены принципы инь и янь (в виде круга, разделенного на две части, — символа взаимодействия и борьбы двух начал).
В христианстве круг служит эталоном божественного и духовного совершенства.
В живой и неживой природе круги и окружности встречаются как на макроуровнях, так и на микроуровнях. Например, движение электронов вокруг атомного ядра; вращение планет вокруг солнца; распространение волн на воде от упавшего груза; образование солнечного и лунного гало; срез дерева; зрачок глаза у человека и многое другое.
Рассмотрим подробней элементы, характерные для окружности.
Радиус окружности— это отрезок, соединяющий центр окружности и любую другую точку, расположенную на линии окружности.
С латинского радиус (radius)- луч, спица колеса. Радиус не сразу приобрел себе такое название.
Слово радиус впервые встречается в 1569 году у французского ученого П. Рамуса, а общепризнанным становится к концу XVII века.
Радиус обозначается маленькой латинской буквой (r) или заглавной (R).
В окружности можно провести столько же радиусов, сколько точек имеет линия окружности; все эти радиусы равны.
Диаметр — это отрезок прямой, проходящий через центр окружности и соединяющий две точки на этой окружности.
Диаметр в переводе с греческого (diametros) — поперечник.
Обычно диаметр обозначают латинской маленькой буквой d или заглавной D.
По величине диаметр равен двум радиусам, лежащим на одной прямой.
d = 2r
Следовательно, радиус- это половина диаметра.
r = d: 2
Пример 1
Радиус окружности равен 6 см.
Чему равен диаметр окружности?
r = 6 см
d — ?
Решение:
d = 2r
d = 2r= 2*6 = 12 (см) диаметр окружности
Ответ: d= 12 см
Пример 2
Диаметр окружности равен 12 см.
Чему равен радиус окружности?
d = 12 см
r — ?
Решение:
r = d : 2
r = 12 : 2 = 6 (см) радиус окружности
Ответ: r = 6 см
У меня есть дополнительная информация к этой части урока!
Секущая окружности — это прямая, пересекающая окружность в двух точках. В результате окружность делится на дуги.
Точки А и В — точки пересечения секущей с окружностью.
Образовались две дуги: (mathbf)
Отрезок, который соединяет любые две точки на окружности (отрезок секущей), называется хордой.
Отрезок АВ (отрезок секущей) на рисунке — хорда окружности.
Хорда в переводе с греческого — струна, тетива.
На рисунке отрезок MN является хордой.
Если хорда проходит через центр окружности, то она является самой большой хордой для этой окружности. По своей сути она является диаметром для данной окружности и делит окружность на две равные дуги.
По мере удаления хорды от центра размеры ее уменьшаются, а дуги делятся на большую и малую.
АВ— самая большая хорда окружности- диаметр окружности.
CD, N1M1, NM, FE— хорды окружности.
Хорды окружности, удаленные на равные расстояния от центра, равны.
Хорды NM и N1M1 равны.
Если две хорды пересекаются в точке, то их отрезки пропорциональны.
Важно отметить, что все рассмотренные элементы окружности одинаковы и для круга.
Пройти тест и получить оценку можно после входа или регистрации
Видео:РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать
Длина окружности и площадь круга
Давайте выясним, что такое длина окружности и как ее определить.
Представьте, что окружность обернута нитью.
Если разрезать эту нить в некоторой точке и размотать ее, то длина нитки будет равна длине окружности.
Обычно длина окружности обозначается заглавной буквой С
Длина окружности (С) зависит от длины ее диаметра (d)
Обратите внимание на рисунок.
Вы можете заметить, что чем больше диаметр, тем больше длина окружности.
Из этого следует, что длина окружности прямо пропорционально зависит от диаметра окружности.
А значит, для любых окружностей отношение длины окружности (С) к длине диаметра (d) является числом постоянным.
Это число (коэффициент пропорциональности) обозначают греческой буквой (mathbf), читается «пи».
С— это длина окружности
d— диаметр окружности
запишем отношение (mathbf)
отсюда следует, что длина окружности равна
Так как диаметр окружности вдвое больше радиуса d = 2r, получим еще одну формулу для вычисления длины окружности
Выясним, чему равна постоянная величина — число (mathbf)
Число (mathbf)- это иррациональное число, т.е. число, которое представлено в виде бесконечной непериодической десятичной дроби.
У меня есть дополнительная информация к этой части урока!
История числа (mathbf) насчитывает около 4 тысячелетий.
Одно из первых доказательств древнего существования этого числа (mathbf) заключено в папирусе Ахмеса, в одном из старейших задачников (1650 год до н.э.), найденного в Древнем Египте.
В папирусе дано достаточно точное, особенного для того времени, значение числа, равного 3,1605.
Точнее число (mathbf) рассчитал древнегреческий математик Архимед. Он приближенно представил значение константы в виде обыкновенной дроби (mathbf<frac >)
Архимеду удалось найти точное приближение числа (mathbf) (т.е. узкий числовой промежуток к которому принадлежит число (mathbf)).
Пройти тест и получить оценку можно после входа или регистрации
Видео:Длина окружности. 9 класс.Скачать
Решения задач по теме «Длина окружности и площадь круга»
Рассмотрим примеры решения задач
Задача 1
Найдите длину окружности, если ее радиус равен 4 см.
Число (mathbf<>) округлите до сотых.
r = 4 см
Длину окружности С — ?
Решение:
Подставив в формулу известные значения радиуса и постоянной (mathbf), получим:
Ответ: (mathbf)(см)
Задача 2
Длина окружности надувного бассейна 15,7м.
Найдите диаметр этого бассейна.
Число (mathbf) округлите до сотых.
C = 15,7 м
Диаметр d — ?
Решение:
Подставив в формулу известные значения длины окружности и постоянной (mathbf), получим:
Ответ: (mathbf) (м)
Задача 3
Диаметр окружности равен 6 см.
Найдите площадь круга, ограниченного этой окружностью.
Значение числа (mathbf) округлить до сотых.
d = 6 cм
Площадь круга S — ?
Решение:
Подставим в формулу известные значения диаметра окружности и постоянной , получим:
(mathbf<S = frac 3,146^2 = frac <3,1436> > = 3,149=28,26) (cм 2 ) площадь круга
Ответ: (mathbf) (см 2 )
Задача 4
Вычислите площадь полукруга, если радиус круга равен 5 см.
Значение (mathbf) округлить до целых.
r = 5 cм
Площадь полукруга Sп — ?
Решение:
Площадь круга найдем по формуле:
Площадь полукруга будет равна половине площади всего круга.
Следовательно, формула для расчета площади полукруга получится вида:
Подставим в формулу известные значения радиуса круга и постоянной (mathbf), получим:
(mathbf<S_п = frac =37,5>) (cм 2 ) площадь полукруга
Ответ: (mathbf) (см 2 )
Задача 5
Найдите площадь круга, если известна длина окружности С.
Длина окружности С
Площадь круга S — ?
Решение:
Длина окружности выражается формулой:
Выразим неизвестный радиус окружности через длину окружности:
Площадь круга определяем по формуле:
Подставим, полученные выражения для радиуса окружности, в формулу площади круга, получим:
Сократим полученную дробь:
У меня есть дополнительная информация к этой части урока!
Кроме вычислительных задач, существуют задачи на построение окружности и круга.
Окружность и круг можно начертить с помощью чертежного инструмента, который называется циркуль.
В переводе с латинского языка circulus означает «окружность», «круг».
Циркуль использовали еще с древности, много тысяч лет назад, об этом свидетельствуют найденные на раскопках находки, изображения.
Циркуль представляет собой две одинаковые по длине «ножки». На конце одной из них игла, а на второй- грифель.
Есть циркуль, у которого вместо «ножки» с грифелем помещается карандаш.
Рассмотрим, как построить окружность (круг) на бумаге с помощью циркуля и линейки.
Если задан радиус окружности (круга), то в нулевую отметку на линейке ставим иголку циркуля, другая «ножка» циркуля с грифелем в точку на линейке, равной по значению заданному радиусу.
Ставим точку на листе бумаги — это будет центр окружности (круга), в эту точку ставим иголку циркуля.
Не отрывая грифеля второй «ножки» циркуля от бумаги проводим окружность с заданным радиусом.
Если в задаче задан диаметр, то, прежде чем совершать замер по линейке, необходимо диаметр разделить пополам.
Таким образом, устанавливаем раствор циркуля по линейке на расстояние d:2 = r и чертим окружность по выше изложенной схеме.
Чтобы начертить окружность на местности, пользуются колышком и веревкой. Колышек вбивают в землю — предполагаемый центр окружности; веревка одним концом закрепляется к этому колышку, второй конец веревки туго натягивается; далее очерчивают окружность.
Данный способ построения окружности (круга) может быть применен и на бумаге, если под рукой не оказалось циркуля.
В качестве колышка берется кнопка, к ней привязывается нить определенной длинны (длина нити равна значению заданного радиуса), ко второму концу привязывается карандаш
Пройти тест и получить оценку можно после входа или регистрации
🔍 Видео
5 класс, 22 урок, Окружность и кругСкачать
Площадь круга. Математика 6 класс.Скачать
Окружнось. Зависимость длины хорды, от длины дуги.Скачать
Длина окружности и площадь кругаСкачать
КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать