Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
а) Обозначим центры окружностей O1 и O2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, — прямоугольный.
Вписанный угол AKD прямой, поэтому он опирается на диаметр AD. Значит, AD ⊥ AB. Аналогично получаем, что BC ⊥ AB. Следовательно, прямые AD и BC параллельны.
б) Пусть, для определенности, первая окружность имеет радиус 4, а радиус второй равен 1.
Треугольники BKC и AKD подобны, Пусть тогда
У треугольников AKD и AKB общая высота, следовательно, то есть SAKB = 4S. Аналогично, SCKD = 4S. Площадь трапеции ABCD равна 25S.
Вычислим площадь трапеции ABCD. Заметим, что Проведём к AD перпендикуляр O2H, равный высоте трапеции, и найдём его из прямоугольного треугольника O2HO1:
Тогда
Следовательно, 25S = 20, откуда S = 0,8 и SAKB = 4S = 3,2.
Приведем вариант решения п. б) предложенный Рамилем Багавиевым.
Из первого решения известно, что Из подобия треугольников AKD и AKB следует таким образом AK = 2BK. Напишем теорему Пифагора для треугольника AKB
Теперь несложно вычислить
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.
а) Пусть АВ — диаметр большей из трёх окружностей, О — её центр, O1 — центр окружности радиуса r у касающейся окружности с диаметром АВ в точке А, O2 — центр окружности радиуса R, касающейся окружности с диаметром АВ в точке С, окружности с центром O1 — в точке D, отрезка АВ — в точке Е. Точки О, O2 и С лежат на одной прямой, поэтому OO2 = ОС − O2С = ОС − R. Аналогично ОО1 = OA − О1А = ОА − r и O1O2 = O1D + O2D = r + R. Следовательно, периметр треугольника OO1O2 равен
а так как О1E = OO1 + ОЕ, то Полученное уравнение не имеет корней, что означает, что данная конфигурация невозможна.
Рассмотрим случай, когда точка Е лежит между точками О и А. В этом случае О1E = OO1 − ОЕ, то есть Из этого уравнения находим, что
Ответ:
Хорды AD, BE и CF окружности делят друг друга на три равные части.
а) Докажите, что эти хорды равны.
б) Найдите площадь шестиугольника ABCDEF, если точки A, B, C, D, E, F последовательно расположены на окружности, а радиус окружности равен
а) Пусть две хорды равны 3x и 3y. По теореме о произведении пересекающихся хорд 2x · x = 2y · y. Отсюда находим, что x = y, значит, эти хорды равны. Аналогично докажем, что третья хорда равна каждой из первых двух.
б) Равные хорды равноудалены от центра окружности, поэтому центр равностороннего треугольника с вершинами в точках попарного пересечения хорд совпадает с центром данной окружности. Пусть хорды BE и CF пересекают хорду AD в точках P и Q соответственно, хорды BE и FC пересекаются в точке T, а H — проекция центра O на хорду AD. Тогда H — общая середина отрезков AD и PQ, а OH — радиус вписанной окружности равностороннего треугольника PQT со стороной PQ.
Через точку T проведём прямую, параллельную AD, через точку P — прямую, параллельную CF, а через точку Q — прямую, параллельную BE. Эти прямые и хорды AD, BE и CF разбивают шестиугольник ABCDEF на 13 одинаковых равносторонних треугольников.
Обозначим PQ = 2a. Тогда
Отсюда находим, что a = 3, значит, PQ = 2a = 6,
Ответ:
Я решил другим, но верным способом через площади 6 равных треугольников, перепроверил с репититором, у нас выходит ответ 126 корней из 3. Кстати именно такого альтернативного способа не хватает в решении.
Наверное, в этот момент стоило бы сравнить ваше решение с нашим и попробовать найти ошибку. В математике все просто: или ошибка есть, или ее нет.
Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
а) Докажите, что прямые KM и BC параллельны.
б) пусть L — точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.
а) Пусть O — центр большей окружности. Линия центров касающихся окружностей проходит через точку касания, поэтому OA — диаметр меньшей окружности.
Точка K лежит на окружности с диаметром OA, значит, ∠AKO = 90°. Отрезок OK — перпендикуляр, опущенный из центра большей окружности на хорду AB. Поэтому K — середина AB. Аналогично, M — середина AC, поэтому KM — средняя линия треугольника ABC. Следовательно, прямые MK и BC параллельны.
б) Опустим перпендикуляр OH на хорду BC. Тогда H — середина BC. Из прямоугольного треугольника OHB находим, что
Пусть Q — центр меньшей окружности. Тогда прямые QP и OH параллельны. Опустим перпендикуляр QF из центра меньшей окружности на OH. Тогда
PH 2 = QF 2 = QO 2 − OF 2 = 25 − 1 =24,
OP 2 = OH 2 + PH 2 = 36 + 24 = 60,
а из прямоугольного треугольника APO находим, что
Отрезок KM — средняя линия треугольника ABC, поэтому L средина AP. Следовательно,
Ответ: б)
Приведём решение Марии Ковалёвой (Москва).
а) Проведём общую касательную к окружностям AT, как показано на рисунке слева. Тогда и поскольку угол между касательной и хордой равен половине заключённой между ними дуги. Тогда равны Соответственные углы при пересечении прямых KM и BC равны, поэтому данные прямые параллельны.
б) По обобщенной теореме синусов, в треугольниках AKM и ABC стороны KM и BC относятся так же, как радиусы данных в условии окружностей, то есть как 1 : 2. Следовательно, KM — средняя линия треугольника ABC, и по теореме Фалеса. Осталось найти AР.
Опустим перпендикуляр OH на хорду BC (см. рисунок справа). Тогда H — середина BC. Из прямоугольного треугольника OHB находим, что
Треугольник OAP прямоугольный, так как угол OРA опирается на диаметр. Углы OAP и OPH равны по теореме об угле между касательной и хордой. Следовательно, прямоугольные треугольники OAP и OPH подобны по острому углу. Имеем: то есть Следовательно, По теореме Пифагора, Окончательно получаем:
Решение «сыпется», если концы хорды ВС расположить по разные стороны от диаметра (ОА). Тогда ОН, по-прежнему равный 6 из теоремы Пифагора, будет по чертежу меньше, чем параллельный ему радиус QP=5 меньшей окружности
Да, Ваше рассуждение доказывает, что этот случай невозможен.
Почему К середина АВ при условии,что ОК перпендикуляр? Что за свойство?
Свойство высоты равнобедренного треугольника. Треугольник ОАВ — равнобедренный, ОК — его высота, проведенная к основанию
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
а) Докажите, что прямые AD и BC параллельны.
б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.
Задание а). Обозначим центры окружностей и соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке По свойству касательных, проведённых из одной точки, и. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, — прямоугольный.
Вписанный угол прямой, поэтому он опирается на диаметр Значит, Аналогично получаем, что Следовательно, прямые AD и BC параллельны.
Задание б). Пусть, для определенности, первая окружность имеет радиус 4, а радиус второй равен 1.
Треугольники BKC и AKD подобны, Пусть тогда
У треугольников общая высота, следовательно, то есть Аналогично, Площадь трапеции ABCD равна
Вычислим площадь трапеции Проведём к AD перпендикуляр равный высоте трапеции, и найдём его из прямоугольного треугольника
Тогда
Следовательно, откуда и
- Касательная к окружности
- Касательная к окружности, секущая и хорда — в чем разница
- Свойства касательной к окружности
- Задача
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- Задача 1
- Задача 2
- Подборка задач для работы на уроке по теме «Касание окружностей»
- «Календарь счастливой жизни: инструменты и механизм работы для достижения своих целей»
- Решение
- Решение
- Решение
- Решение
- 💡 Видео
Видео:Интересная задача о трёх попарно касающихся окружностяхСкачать
Касательная к окружности
О чем эта статья:
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.