Задачи по секущей к окружности с решением

Касательная к окружности

Задачи по секущей к окружности с решением

О чем эта статья:

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Задачи по секущей к окружности с решением

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Задачи по секущей к окружности с решением

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Задачи по секущей к окружности с решением

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Задачи по секущей к окружности с решением

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Задачи по секущей к окружности с решением

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Задачи по секущей к окружности с решением

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Задачи по секущей к окружности с решением

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Задачи по секущей к окружности с решением

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Задачи по секущей к окружности с решением

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Задачи по секущей к окружности с решением

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Задачи по секущей к окружности с решением

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Задачи по секущей к окружности с решением

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Задачи по теме Свойства хорд, касательных и секущих к окружности. Геометрия, 8 класс.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Секущая и касательная. 9 класс.Скачать

Секущая и касательная. 9 класс.

Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся

Сертификат и скидка на обучение каждому участнику

Задачи по секущей к окружности с решением

Задачи по геометрии 8 класс. Касательные, отрезки пересекающихся хорд и отрезки секущих к окружности.

Свойство пересекающихся хорд: произведение

отрезков одной хорды равно произведению

отрезков другой хорды

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ, если СЕ= 8см, АЕ = 3 см, ВЕ = 6 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО, если АО= 4см, ОЕ = 5 см, ОК = 15 см.

Хорды окружности АК и МЕ пересекаются в точке О. Найти длину отрезка МО и ОЕ, если АО = 2 см, ОК = 12 см, МЕ = 10 см.

Хорды окружности АВ и СР пересекаются в точке Е. Найти длину отрезка РЕ и СЕ, если СР = 12 см, АЕ=7 см, ЕВ = 4 см.

Хорды окружности АВ и СД пересекаются в точке О. Найти длину отрезка ДО и ОС, если АО = 12 см, ОВ=4 см, ДО : ОС = 3 : 4.

Хорды окружности МК и СД пересекаются в точке А. Найти длину отрезка ДО и ОС, если МА = 6 см, АК=15 см, СА : АД = 2 : 5.

Свойство секущих к окружности, исходящих из

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АС и ВС, если АМ = 3, МК = 5, АВ = 4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АВ = 4, ВС = 6, АК = 12.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 6, длина отрезка АС на 4 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АВ = 2, АС = 8, длина отрезка АМ на 6 меньше длины отрезка АК.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и ВС, если АМ = 4, АК = 6, АВ : ВС = 2 :4.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и АК, если АМ : АК = 3 : 5, АВ = 5, ВС = 7.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АВ и АС, если АМ = 2, АК = 4, длина отрезка ВС на 6 больше длины отрезка АВ.

Из точки А, лежащей вне окружности проведены лучи АС и АК, пресекающие окружность в точках В, С и М, К соответственно, начиная от точки А. Найти длину отрезка АМ и МК, если АМ на 8 меньше длины отрезка МК и длина отрезка АВ = 3, АС = 8.

Свойство секущей и касательной к окружности,

исходящих из одной точки:

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 9.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АВ, если АК = 4, АР = 16.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 4, АВ = 8.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР, если АК = 5, АВ = 10.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 5, а отрезок КР на 5 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АК и АР, если АВ = 6, а отрезок КР на 6 больше отрезка АК.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 4 : 5, АВ = 12.

Из точки А, не лежащей на окружности проведена касательная АВ и секущая АК, которая пересекает окружность в точках К и Р начиная от точки А. Найти длину отрезка АР и АК, если АК : КР = 1 : 3, АВ = 14.

Видео:Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1Скачать

Свойства хорд, касательных, секущих окружности I Для решения задач из ОГЭ И ЕГЭ I Часть 1

Задачи по секущей к окружности с решением

Найдите хорду, на которую опирается угол 120°, вписанный в окружность радиуса Задачи по секущей к окружности с решением

Применим теорему синусов к треугольнику ABC:

Задачи по секущей к окружности с решением

Приведём другое решение.

Вписанный угол дополняет половину центрального угла, опирающегося на ту же хорду, до 180°, значит, Задачи по секущей к окружности с решениемПо теореме косинусов:

Задачи по секущей к окружности с решением

Ошибка в последней строчке. Перед 6 не плюс, а минус.

В последней строчке все верно: Задачи по секущей к окружности с решением.

Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Из точки C хорда АВ видна под углом АCВ. Пусть большая часть окружности равна 7x, тогда меньшая равна 5x.

Задачи по секущей к окружности с решением

Значит, меньшая дуга окружности равна 150°, а большая — 210°. Вписанный угол равен половине дуги, на которую он опирается, значит, опирающийся на большую дугу угол АCВ равен 105°.

В условии сказано под меньшей дугой окружности, a в ответе дано под большей. Правильно?

Решение верно, по условию точка лежит на меньшей дуге.

Хорда AB стягивает дугу окружности в 92°. Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.

Угол между касательной и хордой равен половине дуги, заключённой между ними. Поэтому он равен 46.

Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.

Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Поэтому величина меньшей дуги АВ окружности равна 64°. Центральный угол измеряется дугой, на которую он опирается, поэтому угол АОВ равен 64°.

Примечание об изменении задания.

Ранее это задание и аналогичные к нему в Открытом банке были формулированы иначе.

Задание.Угол между хордой AB и касательной BC к окружности равен 32°. Найдите величину меньшей дуги, стягиваемой хордой AB. Ответ дайте в градусах.

Решение. Угол между касательной и хордой, проведённой в точку касания, измеряется половиной дуги, заключённой между его сторонами. Значит, искомая величина дуги равна 64°.

📽️ Видео

Теорема об отрезках хорд и секущихСкачать

Теорема об отрезках хорд и секущих

Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

#59. Олимпиадная задача о касательной к окружности!Скачать

#59. Олимпиадная задача о касательной к окружности!

ЗАДАНИЕ 1 ЕГЭ (ПРОФИЛЬ). ХОРДА, КАСАТЕЛЬНАЯ И СЕКУЩАЯ.Скачать

ЗАДАНИЕ 1 ЕГЭ (ПРОФИЛЬ). ХОРДА, КАСАТЕЛЬНАЯ И СЕКУЩАЯ.

8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Геометрия 8 класс: Решение задач на касательную к окружностиСкачать

Геометрия 8 класс: Решение задач на касательную к окружности

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ в точке ЗАДАЧИ 8 классСкачать

КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ в точке ЗАДАЧИ 8 класс

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Задача на окружности из ОГЭ-2023!! Разбор за 30 секСкачать

Задача на окружности из ОГЭ-2023!! Разбор за 30 сек

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline
Поделиться или сохранить к себе: