Параллельные прямые — две прямые, которые лежат в одной плоскости и не пересекаются, а || b.
Слово «параллельный» от греческого «parallelos» — идущий рядом. Знак параллельности || впервые встречается в трудах У. Оутреда (1677 г).
Аксиома параллельности:
Через точку, не лежащую на данной прямой, на плоскости можно провести только одну прямую , параллельную данной прямой.
Выделенная синим цветом часть этого утверждения — знаменитый пятый постулат Евклида. Отказ от пятого постулата ведёт к геометрии Лобачевского. В геометрии Лобачевского через точку, лежащую за прямой, проходит множество прямых, которые не пересекают данную прямую.
Иногда Аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.
Примечание. В планиметрии две различные прямые либо пересекаются, либо параллельны. В стереометрии возможен третий вариант — прямые могут не пересекаться, так как не лежат в одной плоскости. Такие прямые называются скрещивающимися.
- Свойства и признаки параллельных прямых
- Параллельные прямые
- Понятие параллельных прямых
- Готовые работы на аналогичную тему
- Историческая справка
- Параллельные прямые в жизни
- Параллельные прямые в архитектуре
- Параллельные прямые
- Что такое параллельные прямые
- Аксиома параллельных прямых
- Фигуры с параллельными прямыми
- Что мы узнали?
- 🔍 Видео
Свойства и признаки параллельных прямых
Свойства и признаки параллельных прямых:
- Две прямые, параллельные третьей, параллельны.
- Через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.
- Если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
- Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
- Если две параллельные прямые пересечены секущей, то:
– сумма внутренних односторонних углов равна 180°,
– накрест лежащие углы равны,
– соответственные углы равны,
Теорема Фалеса:
Если на одной из двух прямых отложено несколько равных отрезков и через их концы проведены параллельные прямые, не пересекающие другую прямую, то и на ней отложатся равные отрезки.
Это конспект по теме «Параллельные прямые». Выберите дальнейшие действия:
Видео:Параллельные прямые. 6 класс.Скачать
Параллельные прямые
Вы будете перенаправлены на Автор24
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Понятие параллельных прямых
Параллельные прямые – прямые, которые лежат в одной плоскости, не совпадают и не имеют общих точек.
Если у прямых есть общая точка, тогда они пересекаются.
Если все точки прямых совпадают, то имеем по сути одну прямую.
Если прямые лежат в разных плоскостях, то условий их параллельности несколько больше.
При рассмотрении прямых на одной плоскости можно дать следующее определение:
Две прямые на плоскости называют параллельными, если они не пересекаются.
В математике параллельные прямые принято обозначать с помощью знака параллельности « $parallel$ ». Например, тот факт, что прямая $c$ параллельна прямой $d$ обозначается следующим образом:
Зачастую рассматривается понятие параллельных отрезков.
Два отрезка называют параллельными, если они лежат на параллельных прямых.
Например, на рисунке параллельными являются отрезки $AB$ и $CD$, т.к. они принадлежат параллельным прямым:
Вместе с тем, отрезки $MN$ и $AB$ или $МN$ и $CD$ параллельными не являются. Этот факт можно записать с помощью символов следующим образом:
Готовые работы на аналогичную тему
$MN ∦ AB$ и $MN ∦ CD$.
Аналогичным образом определяется параллельность прямой и отрезка, прямой и луча, отрезка и луча или двух лучей.
Видео:6 класс, 44 урок, Параллельные прямыеСкачать
Историческая справка
С греческого языка понятие «параллелос» переводится «рядом идущий» или «проведенный друг возле друга». Этот термин использовался в древней школе Пифагора еще до того, как параллельные прямые получили свое определение. Согласно историческим фактам Евклидом в $III$ в. до н.э. в его трудах все же был раскрыт смысл понятия параллельных прямых.
В древности знак для обозначения параллельных прямых имел отличный вид того, что мы используем в современной математике. Например, древнегреческим математиком Паппом в $III$ в. н.э. параллельность обозначалась с помощью знака равенства. Т.е. тот факт, что прямая $l$ параллельна прямой $m$ ранее обозначался «$l=m$». Позднее для обозначения параллельности прямых стали использовать привычный нам знак «$parallel$, а знак равенства стали использовать для обозначения равенства чисел и выражений.
Видео:Параллельные прямые, 6 классСкачать
Параллельные прямые в жизни
Зачастую мы не замечаем, что в обычной жизни нас окружает огромное число параллельных прямых. Например, в нотной тетради и сборнике песен с нотами нотный стан выполнен с помощью параллельных линий. Также параллельные линии встречаются и в музыкальных инструментах (например, струны арфы, гитары, клавиши фортепиано и т.п.).
Электрические провода, которые расположены вдоль улиц и дорог, также проходят параллельно. Рельсы линий метро и железных дорог располагаются параллельно.
Кроме быта параллельные линии можно встретить в живописи, в архитектуре, при строительстве зданий.
Видео:Перпендикулярные и параллельные прямые. Математика 6 классСкачать
Параллельные прямые в архитектуре
На представленных изображениях архитектурные сооружения содержат параллельные прямые. Использование параллельности прямых в строительстве помогает увеличить срок службы таких сооружений и придает им необычайную красоту, привлекательность и величие. Линии электропередач также умышленно проводятся параллельно, чтобы избежать их пересечения или соприкосновения, что привело бы к замыканию, перебоям и отсутствию электричества. Чтобы поезд мог беспрепятственно перемещаться рельсы также выполнены параллельными линиями.
В живописи параллельные линии изображают сводящимися в одну линию или близкими к тому. Такой прием называется перспективой, которая следует из иллюзии зрения. Если долго смотреть вдаль, то параллельные прямые будут похожи на две сходящиеся линии.
Видео:Перпендикулярные прямые. 6 класс.Скачать
Параллельные прямые
Средняя оценка: 4.7
Всего получено оценок: 98.
Средняя оценка: 4.7
Всего получено оценок: 98.
Параллельные прямые находятся повсюду в нашей жизни. Они – основа симметрии, которая, так или иначе, присутствует в каждом элементе мебели, архитектуре и орудиях труда. Знание определения и свойств параллельных прямых помогают не только при решении задач по математике 6 класса, но и при расчетах реальных предметов быта.
Видео:Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать
Что такое параллельные прямые
Параллельными прямыми называют прямые, которые не пересекаются.
В этом определении параллельных прямых есть небольшая неточность: прямые, которые имеют больше одной общей точки, совпадают. Иногда о них также говорят, как о параллельных.
Прямая, пересекающая параллельные прямые, называется секущей. При пересечений образуется 8 углов. Друг относительно друга они могут быть соответственными, односторонними и накрест лежащими. Рассмотрим их на примере.
Рис. 1. Виды углов.
- Соответственные углы: 7 и 2, 1 и 6, 8 и 4, 3 и 5
- Накрест лежащие: 7 и 5, 8 и 6, 1и 4, 3 и 2
- Односторонние: 1и 2, 3 и 4, 7 и 6, 8 и 5
Видео:Параллельные прямые | Математика 6 класс #44 | ИнфоурокСкачать
Аксиома параллельных прямых
Аксиома параллельных прямых – это одно из основных утверждений геометрии. Через точку можно провести прямую, параллельную данной, и при том только одну – это наиболее распространенная формулировка аксиому.
Из аксиомы есть два следствия:
- Если прямая параллельна одной из двух параллельных прямых, то она параллельна и второй.
- Если прямая пересекает одну из параллельных прямых, то она пересечет и вторую.
Обратите внимание, что аксиома справедлива только для плоскости. В пространстве может быть вариант, когда прямая параллельна плоскости, в которой будет бесконечное множество параллельных ей прямых, проходящих через одну точку. Значит в пространстве это условие не обязательно выполняется.
Расстояние между параллельными прямыми в любой точке будет одинаковым и равным величине отрезка, перпендикулярного каждой из прямых.
Видео:Математика 6 класс: Параллельные и перпендикулярные прямыеСкачать
Фигуры с параллельными прямыми
Существует множество фигур, при построении которых используются параллельные прямые. Например, параллелограмм состоит из двух попарно параллельных отрезков.
Квадрат и прямоугольник также состоят из попарно параллельных прямых, но при этом они являются частным случаем параллелограмма.
В треугольнике средняя линия всегда параллельна основанию.
Рис. 2. Средняя линия треугольника.
Также есть еще одна интересная фигура: трапеция. В трапеции большое и малое основание параллельны друг другу, а боковые стороны не параллельны.
Рис. 3. Трапеция.
Если прямые непараллельны, то они пересекаются, но если не параллельны отрезки, это вовсе не значит, что они пересекутся. Отрезки имеют конечное значение длинны, а поэтому могут просто стоять отдельно друг от друга. При этом, отдельных видов или каких-либо таблиц параллельных прямых нет, и вряд ли они когда-нибудь появятся.
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
Что мы узнали?
Мы узнали все о параллельных прямых, привели аксиому параллельных прямых и следствия из нее. Поговорили о различии понятий параллельных прямых и параллельных отрезков, а также выяснили, почему аксиома для параллельных прямых работает только на плоскости. Привели примеры фигур, для построения которых требуются параллельные прямые.
🔍 Видео
Параллельные прямые. Математика. 6 класс.Скачать
ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. ЗАДАЧА НА ПОСТРОЕНИЕ. Примеры | МАТЕМАТИКА 6 классСкачать
Математика 6 класс. Параллельность прямыхСкачать
Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Математика 6 класс - ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать
6 класс. Урок 3. ПРАКТИКА: Пересекающиеся и параллельные прямыеСкачать
6 класс. Параллельные прямыеСкачать
6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать
Параллельные прямые (задачи).Скачать
МЕРЗЛЯК-6. ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. ПАРАГРАФ-45Скачать