методическая разработка по геометрии (7 класс) по теме
Урок по учебнику Погорелова занимающий четыре параграфа теоретического материала, позволяющий выполнять решения задач с детьми после усвоения теории.
- Скачать:
- Предварительный просмотр:
- По теме: методические разработки, презентации и конспекты
- Геометрия. 7 класс
- Задачи на окружость. 7 класс.
- «Снятие эмоционального напряжения у детей и подростков с помощью арт-практик и психологических упражнений»
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Материал подходит для УМК
- Дистанционные курсы для педагогов
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 💡 Видео
Видео:Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать
Скачать:
Вложение | Размер |
---|---|
tema_okruzhnost.docx | 20.54 КБ |
Видео:Окружность. 7 класс.Скачать
Предварительный просмотр:
Цель урока : Дать понятие окружности и сопутствующих элементов радиуса, диаметра, хорды. Вести определение вписанной и описанной окружностей, касательной к окружности. Научить использовать выше перечисленные понятия в решениях задач.
-развивать познавательный интерес к предмету, познакомить с историческим материалом,
-прививать учащимся навык самостоятельности в работе.
Оборудование : линейки , циркуль, презентация
Ход урока : 1.Историческая справка про окружность
Древние греки считали окружность совершеннейшей и «самой круглой» фигурой. И в наше время в некоторых ситуациях, когда хотят дать особую оценку, используют слово «круглый», которое считается синонимом слова полнейший. Еще в древности людям были известны многие геометрические фигуры, в том числе окружность. Об этом свидетельствуют археологические раскопки. Окружность – самая простая кривая линия
2.Опред : Окружностью наз .фигура ,которая состоит из всех точек плоскости, равноудаленных от данной (центра окружности) С А
Радиусом называется расстояние от центра К
окружности до любой точки окружности. (ОВ)
Хорда –это отрезок, соединяющий две точки окружности.(КА)
Диаметр –это хорда , проходящая через центр окружности.(ДС)
Найти угол между диаметром и хордой равной радиусу
3.Окружность, описанная около треугольника
Окружность называется описанной около треугольника , если она проходит через все его вершины. В
Теорема: Центр окружности , описанной около треугольника, точка пересечения перпендикуляров, проведенных к сторонам треугольника через их середины В
1)Треугольник АОС- равнобедренный т.к, АО=ОС=R
2)ОД- медиана и высота А С
3)Следовательно центр окружности т.О принадлежит ОД который
4)Аналогично рассматриваем треугольник ВОС, в котором точка О принадлежит ОЕ который перпендикулярен ВС
4.Касательная к окружности
Прямая проходящая через точку окружности и перпендикулярна радиусу окружности проведенному в эту точку называется касательной.
Т.А- точка касания А
Если центры окружностей лежат по
одну сторону от прямой касания
Если центры окружности лежат по разные стороны от прямой касания
5. Окружность вписанная в треугольник В
Окружность называется вписанной ,если она касается всех сторон треугольника
Теорема: Центр вписанной в треугольник окружности находится на пересечении биссектрис углов
Треугольник АОВ= треугольнику АОД т.к
Угол АЕО= углу АДО=90 0 А
Следовательно угол ЕАО= углу ДАО т.е, точка О Д С принадлежит АО- биссектрисе.
Аналогично рассматриваем принадлежность точки О , биссектрисе СО.
6.Решение задач на закрепление :
1) Работа с учебником: №9, 10, 11.
2) Дополнительная задача
Дано : окружность с центром О,
АС- касательная, АВ- хорда, угол ВАС=75 о
В Найти : Угол АОВ
О 1) 90 0 – 75 0 =15 0 (угол А в треугольнике АОВ)
2)180 0 -15 0 *2=150 0 ( угол АОВ)
7. Домашнее задание: Учить теоретический материал
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
По теме: методические разработки, презентации и конспекты
Урок геометрии по теме «Окружность», 8 класс
В ходе урока обеспечивается усвоение понятия «определение геометрической фигуры — окружность»;формируются умения вычерчивать окружность и выделять её из множества объектов, измерять радиус.
Уроки модульной технологии по геометрии. * класс тема: «Окружность, касательная к окружности, центральные и вписанные углы»
Касательная к окружности. Центральные и вписанные углы.Комплексная дидактическая цель – расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью.
Компетентностно-ориентированные тестовые задания по геометрии по теме «Окружность» для 9 класса
Разработка «Компетентностно-ориентированные тестовые задания по геометрии для 9 класса по теме «Окружность». содержит 21 задание разного вида компетентностно-ориентированной направл.
Зачет по геометрии по теме: Окружность.
Двенадцать карточек по десять вопросов по теме: Окружность.
Урок геометрии по теме «Окружность», 7 класс
В данном материале представлана технологическая карта урока геометрии 7 класса по теме «Окружность», приложения к уроку, а также тест на знание теории в формате ОГЭ «Верно-неверно».
Опрос-тест по геометрии на тему «Окружность. Центральные и вписанные углы» (8 класс)
Тест по геометрии в 8 классе направленный на знание учащимися темы «Окружность. Центральные и вписанные углы» . В каждом из двух вариантов 10 вопросов с выбором одного правильного из четырёх предложен.
Презентация к уроку геометрии по теме «Окружность» 8 класс.
Презентация к уроку геометрии по теме «Окружность» 8 класс.
Видео:§ 5 № 1-53 - Геометрия 7-9 класс ПогореловСкачать
Геометрия. 7 класс
Конспект урока
Окружность. Задачи на построение
Перечень рассматриваемых вопросов:
- Геометрическое место точек, примеры ГМТ.
- Изображение на рисунке окружности и ее элементов.
- Решение задач на построение.
- Выполнение построений прямого угла, отрезка, угла равного данному, биссектрисы угла, перпендикулярных прямых, середины отрезка с помощью циркуля и линейки.
Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.
Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
Хорда – отрезок, соединяющий две точки окружности.
Диаметр – хорда, проходящая через центр окружности.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М.А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Ранее мы узнали некоторые геометрические фигуры, например, угол, отрезок, треугольник, научились их строить и измерять. Сегодня мы введём определение ещё одной фигуры – окружности, рассмотрим её элементы и выполним построения геометрических фигур с помощью циркуля и линейки.
Для начала дадим определение геометрической фигуры, называемой окружностью.
Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.
Но можно использовать и другое определение окружности.
Окружность ‑ это геометрическое место точек, удалённых на одно и то же расстояние от точки, называемой центром окружности. Это расстояние называют радиусом окружности. В нашем случае точки О.
При этом стоит пояснить, что геометрическое место точек – это фигура речи, употребляемая в математике для определения геометрической фигуры, как множества всех точек, обладающих некоторым свойством.
Вспомним элементы окружности.
Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.
По определению окружности все её радиусы имеют одну и ту же длину. OM = OA
Отрезок, соединяющий две точки окружности, называется хордой.
Хорда, проходящая через центр окружности, называется диаметром.
O – середина диаметра.
Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности.
AMB, ALB – дуги окружности.
Построим окружность радиусом 3 см. Для этого поставим точку О. Возьмём циркуль и выставим с помощью линейки расстояние между ножками циркуля, равное 3 см. Поставим иголочку циркуля в точку О и построим окружность, вращая ножку циркуля с грифелем вокруг этой точки. Грифель описывает замкнутую кривую линию, которую называют окружностью.
Часть плоскости, которая лежит внутри окружности, вместе с самой окружностью, называют кругом, т. е. окружность ‑ граница круга.
Итак, мы можем с помощью циркуля строить окружность, но с его помощью можно построить и угол равный данному. Для построения воспользуемся ещё и линейкой.
Построить: EOМ = A.
1. Окр. (A; r), r – произвольный радиус.
2. Окр. (A; r) ∩ AB = B.
3. Окр. (A; r) ∩ AС = С.
4. Окр. (O; r) ∩ OM = D.
5. Окр. (D; BС) ∩ Окр. (O; r) = E
6. OЕ, ЕОD = BAC (из равенства ∆ОЕD и ∆ABC). EOM – искомый.
Теперь выполним построение биссектрисы угла.
Построить: AE – биссектриса CAB.
- Окр. (A; r), r – произвольный радиус.
- Окр. (A; r) ∩ AB = B.
- Окр. (A; r) ∩ AC = C.
- Окр. (C; CB) ∩ Окр. (B; CB) = E.
- AE – искомая биссектриса BAC, т. к. ABE =CBE (из равенства ∆ACE и ∆ABE).
Рассмотрим ещё одно построение с помощью циркуля и линейки. Построим середину отрезка АВ.
Для этого построим две окружности с центрами на концах отрезка , т. е. в точках А и В. Окружности пересекутся в точках Р и Q. Проведём прямую через точки Р и Q. Прямая РQ пересечёт прямую АВ в точке О, которая и будет являться искомой серединой отрезка АВ. Докажем это. Для этого рассмотрим ∆APQ и ∆BPQ. Они равны по трём сторонам, следовательно, ∠1 = ∠2, поэтому РО– биссектриса равнобедренного ∆АВР, а соответственно РО ещё и медиана. Следовательно, точка О – середина отрезка АВ.
Разбор заданий тренировочного модуля.
№ 1. АВ и СК – диаметры окружности, с центром в точке О. По какому признаку равенства треугольников равны треугольники АОС и ОКВ?
Так как О – центр окружности, то точка О делит диаметры пополам, следовательно отрезки АО, ОВ, ОС, ОК равны. ∠СОА = ∠КОВ (как вертикальные). Поэтому треугольники АОС и ОКВ равны по первому признаку равенства треугольников (по двум сторонам и углу между ними).
Ответ: 1 признак равенства треугольников.
№ 2. На рисунке O – центр окружности, АВ – диаметр окружности. Отрезки АD и ВС, перпендикулярны к отрезку АВ. АВ = 8 см, ОС = 5 см, СВ = 3 см. Чему равен периметр ∆AOD?
Периметр треугольника AOD равен сумме сторон АО, AD, DO. Найдём эти стороны.
По условию O – центр окружности, то она делит диаметр пополам, следовательно отрезок АО равен отрезку ОВ, т. е. АО = АВ:2 = 8 см :2 = 4 см.
По условию отрезки АD и ВС, перпендикулярны к отрезку АВ, следовательно ∠СВО = ∠ОАD = 90°, ∠АОD = ∠СОВ (как вертикальные). Поэтому ∆АОD = ∆СОВ (по 2 признаку равенства треугольников). Следовательно, AD = СВ = 3 см, DO = ОС = 5 см.
Р∆AOD = АО + AD + DO = 4 см + 3 см + 5 см = 12 см.
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Задачи на окружость. 7 класс.
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:§ 13 № 1- 55 - Геометрия 7-9 класс ПогореловСкачать
«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»
Сертификат и скидка на обучение каждому участнику
Отрезки AC и BD — диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
В окружности с центром O отрезки AC и BD — диаметры. Угол AOD равен 132°. Найдите угол ACB. Ответ дайте в градусах.
Точка O — центр окружности, на которой лежат точки A, B и C. Известно, что ∠ ABC=46° и ∠ OAB=27°. Найдите угол BCO. Ответ дайте в градусах.
Точка O — центр окружности, на которой лежат точки A, B и C. Известно, что ∠ ABC=50° и ∠ OAB=35°. Найдите угол BCO. Ответ дайте в градусах.
Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.
Прямая касается окружности в точке K. Центр окружности — точка O. Хорда KM образует с касательной угол, равный 40°. Найдите величину угла KOM. Ответ дайте в градусах.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 6.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
Касательные в точках A и B к окружности с центром O пересекаются под углом 68°. Найдите угол ABO. Ответ дайте в градусах.
В угол C величиной 107° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Угол AOB опирается на хорду АВ длиной 6. При этом угол ОАВ равен 60°. Найдите радиус окружности.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 80°. Найдите величину угла OAB.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 937 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 681 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 305 человек из 67 регионов
Ищем педагогов в команду «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 496 304 материала в базе
Материал подходит для УМК
«Геометрия», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.
§ 21. Описанная и вписанная окружности треугольника
Видео:КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать
Дистанционные курсы для педагогов
Другие материалы
- 25.05.2020
- 986
- 25.05.2020
- 306
- 25.05.2020
- 381
- 22.05.2020
- 82
- 19.05.2020
- 100
- 15.05.2020
- 112
- 14.05.2020
- 431
- 14.05.2020
- 175
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 26.05.2020 5062 —> —> —> —>
- DOCX 27.7 кбайт —> —>
- Рейтинг: 5 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Макарова Светлана Григорьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 7 лет и 2 месяца
- Подписчики: 0
- Всего просмотров: 14370
- Всего материалов: 12
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:7 класс, 21 урок, ОкружностьСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Свободное движение повышает креативность
Время чтения: 1 минута
Школы Сургута переведут на дистанционное обучение с 24 января
Время чтения: 1 минута
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
Орловские школы переведут на дистанционное обучение с 24 января
Время чтения: 1 минута
Ускоренный просмотр онлайн-лекций не мешает их пониманию
Время чтения: 3 минуты
«Учителя года» проведут открытые занятия для педагогов России
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
💡 Видео
Окружность и задачи на построениеСкачать
ОКРУЖНОСТЬ задачи на построение 7 класс АтанасянСкачать
§ 11 № 1- 69 - Геометрия 7-9 класс ПогореловСкачать
7 класс, 23 урок, Примеры задач на построениеСкачать
Бестселлер Все правила по геометрии за 7 классСкачать
7 класс геометрия. Окружность. Решение задач. Урок 2Скачать
Свойство диаметра окружности. 7 класс.Скачать
Окружность, диаметр, хорда геометрия 7 классСкачать
Задачи на построение. Геометрия 7 классСкачать
Урок 3 Окружность и круг (7 класс)Скачать
Геометрическое место точек (ГМТ).ОКРУЖНОСТЬ и КРУГ §19 геометрия 7 классСкачать