Высота проведенная к стороне треугольника

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Видео:В треугольнике со сторонами 9 и 6 проведены высоты ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

В треугольнике со сторонами 9 и 6 проведены высоты ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота проведенная к стороне треугольника

1. Через площадь и длину стороны

Высота проведенная к стороне треугольника

где S – площадь треугольника.

2. Через длины всех сторон

Высота проведенная к стороне треугольника

где p – это полупериметр треугольника, который рассчитывается так:

Высота проведенная к стороне треугольника

3. Через длину прилежащей стороны и синус угла

Высота проведенная к стороне треугольника

4. Через стороны и радиус описанной окружности

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота в прямоугольном треугольнике

Высота проведенная к стороне треугольника

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Высота проведенная к стороне треугольника

2. Через стороны треугольника

Высота проведенная к стороне треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Видео:№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Высота проведенная к стороне треугольника

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Видео:№470. Две стороны треугольника равны 7,5 см и 3,2 см. Высота, проведенная кСкачать

№470. Две стороны треугольника равны 7,5 см и 3,2 см. Высота, проведенная к

Способы нахождения высоты треугольника: теорема и формула

Видео:Геометрия Две стороны треугольника равны 6 см и 12 см а высота проведенная к третьей стороне 4 смСкачать

Геометрия Две стороны треугольника равны 6 см и 12 см а высота проведенная к третьей стороне 4 см

Определение высоты треугольника

Геометрия, являющаяся разделом математики, изучает структуры в пространстве и на плоскости. Одним из типов таких фигур являются геометрические фигуры. К ним можно отнести квадрат, прямоугольник, круг, пятиугольник, треугольник и другие. Из них можно делать более сложные фигуры или оставлять в первоначальном виде.

Треугольником является фигура, относящаяся к классу простых фигур, которая образована тремя точками, находящимися не на одной прямой, и соединенными между собой тремя отрезками.

Треугольники могут быть:

  • разными по величине углов: прямоугольными, тупоугольными и остроугольными;
  • разными по числу равных сторон: равносторонними, равнобедренными и разносторонними.

Помимо трех сторон, важными элементами треугольников являются медианы, высоты и биссектрисы.

Высотой треугольника является перпендикуляр, опущенный из угла треугольника вниз, на противоположную сторону.

В геометрии высота треугольника обозначается буквой h.

В зависимости от типа треугольника высота может:

  • падать на противоположную сторону — у остроугольного треугольника;
  • находиться вне треугольника — у тупоугольного треугольника;
  • совпадать с одной из сторон — у прямоугольного треугольника.

Чтобы сделать высоту графически явной и понятной на рисунке, ее нередко выделяют красной линией.

Для того чтобы определить графическое начертание высоты треугольника, необходимо:

  1. Найти вершину фигуры.
  2. Опустить вниз перпендикулярную линию к противоположной стороне.
  3. Продлить противоположную сторону до пересечения с высотой, если требуется.

Любой треугольник имеет 3 высоты — по числу углов. Их пересечение находится в точке ортоцентра, которая, в зависимости от типа треугольника, может находиться внутри треугольника, снаружи на пересечении продолжений высот или совпадать с вершиной прямого угла.

Все три высоты треугольника обратно пропорциональны сторонам, к которым опущены. Доказательством будет соотношение:

A × H A ÷ B × H B ÷ C × H C = 1 B C ÷ 1 A C ÷ 1 A B

Выглядеть графически это будет так:

Существует множество способов нахождения высоты треугольника в зависимости от имеющихся данных.

Через площадь и длину стороны, к которой опущена высота:

где S — уже известная площадь треугольника,

Через длины всех сторон:

h = 2 p p × a p × b p × c a

где a, b и c — стороны треугольника,

p — его полупериметр.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длину прилежащей стороны и синус угла:

s i n a — синус угла прилежащей стороны.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через стороны и радиус описанной окружности.

Решать задачи с треугольником и описанной окружностью для нахождения высоты можно следующим образом:

где b, c — стороны разностороннего треугольника, к которым не опущена высота,

R — радиус описанной окружности.

Данная формула подходит только для нахождения высоты разностороннего треугольника.

Через длины отрезков, образованных на гипотенузе при проведении к ней высоты треугольника:

где C 1 и С 2 — длины отрезков, образованных на гипотенузе, проведенной к ней высотой.

Данная формула подходит только для нахождения высоты прямоугольного треугольника.

Видео:№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольникаСкачать

№263. Высоты, проведенные к боковым сторонам АВ и АС остроугольного равнобедренного треугольника

Нахождение высоты равнобедренного треугольника через основание и боковые стороны

Равнобедренным треугольником называют треугольник, имеющий одинаковые по длине катеты, которые образуют равные углы с основанием. В таком треугольнике высота будет опускаться ровно в середину основания, образуя с ним прямой угол.

Помимо высоты, проведенная линия будет являться также осью симметрии, биссектрисой вершинного угла и медианой.

Формула для нахождения высоты в этом случае:

где a — основание,

b — равные боковые стороны.

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Нахождение высоты прямоугольного треугольника через его катеты

Прямоугольным считается треугольник, у которого один из углов является прямым, то есть равным 90°. Высота, опущенная из такого угла, падает на гипотенузу треугольника и делит его на два прямоугольных треугольника, которые пропорциональны по отношению к большому треугольнику и друг к другу.

Важно отметить, что две другие высоты будут совпадать с катетами треугольника.

Найти высоту в прямоугольном треугольнике, можно через два его катета (a и b) и гипотенузу (c).

Причем гипотенуза также легко находится через катеты по теореме Пифагора:

Расчет высоты идет следующим образом:

где a, b и c — вышеупомянутые стороны треугольника.

Видео:1713 сторона треугольника равна 18 А высота проведённая к этой стороне равна 17Скачать

1713  сторона треугольника равна 18 А высота проведённая к этой стороне равна 17

Высота треугольника. Задача Фаньяно

Высота проведенная к стороне треугольникаВысота треугольника. Свойство высоты прямоугольного треугольника
Высота проведенная к стороне треугольникаРасположение высот у треугольников различных типов
Высота проведенная к стороне треугольникаОртоцентр треугольника
Высота проведенная к стороне треугольникаРасположение ортоцентров у треугольников различных типов
Высота проведенная к стороне треугольникаОртоцентрический треугольник
Высота проведенная к стороне треугольникаЗадача Фаньяно

Видео:Высота в прямоугольном треугольнике. 8 класс.Скачать

Высота в прямоугольном треугольнике. 8 класс.

Высота треугольника. Свойство высоты прямоугольного треугольника

Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).

Высота проведенная к стороне треугольника

На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.

Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.

Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).

Высота проведенная к стороне треугольника

Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.

Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.

Видео:Найти высоту, проведенную к боковой стороне равнобедренного треугольника.Скачать

Найти высоту, проведенную к боковой стороне равнобедренного треугольника.

Расположение высот у треугольников различных типов

ФигураРисунокОписание
Остроугольный треугольникВысота проведенная к стороне треугольникаВсе высоты остроугольного треугольника лежат внутри треугольника.
Высота проведенная к стороне треугольника
Высота проведенная к стороне треугольника
Прямоугольный треугольникВысота проведенная к стороне треугольникаВысоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Высота проведенная к стороне треугольника
Высота проведенная к стороне треугольника
Тупоугольный треугольникВысота проведенная к стороне треугольникаВысоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Высота проведенная к стороне треугольника
Высота проведенная к стороне треугольника
Остроугольный треугольник
Высота проведенная к стороне треугольникаВысота проведенная к стороне треугольникаВысота проведенная к стороне треугольника
Все высоты остроугольного треугольника лежат внутри треугольника.
Прямоугольный треугольник
Высота проведенная к стороне треугольникаВысота проведенная к стороне треугольникаВысота проведенная к стороне треугольника
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Тупоугольный треугольник
Высота проведенная к стороне треугольникаВысота проведенная к стороне треугольникаВысота проведенная к стороне треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Все высоты остроугольного треугольника лежат внутри треугольника.

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника

Видео:№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведеннаяСкачать

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведенная

Ортоцентр треугольника

Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.

Следовательно, точка B является серединой стороны C1A1 .

Следовательно, точка A является серединой стороны C1B1 .

Следовательно, точка C является серединой стороны B1A1 .

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.

Теорема 1 доказана.

Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.

У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.

Видео:№469. Стороны АВ и ВС треугольника ABC равны соответственно 16 см и 22 см, а высота,Скачать

№469. Стороны АВ и ВС треугольника ABC равны соответственно 16 см и 22 см, а высота,

Расположение ортоцентров у треугольников различных типов

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Высота проведенная к стороне треугольника

Ортоцентр остроугольного треугольника лежит внутри треугольника.

Высота проведенная к стороне треугольника

Ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Ортоцентр тупоугольного треугольника лежит вне треугольника.
В ортоцентре тупоугольного треугольника пересекаются не высоты, а продолжения высот треугольника.

Видео:Геометрия Площадь треугольника равна 48 см2. Найдите сторону треугольника, если высота, проведеннаяСкачать

Геометрия Площадь треугольника равна 48 см2. Найдите сторону треугольника, если высота, проведенная

Ортоцентрический треугольник

Решим следующую задачу.

Задача . В остроугольном треугольнике ABC проведены высоты AD и BE (рис.5). Доказать, что треугольник DCE подобен треугольнику ABC .

Высота проведенная к стороне треугольника

Решение . Рассмотрим треугольники ADC и BEC . Эти треугольники подобны в силу признака подобия прямоугольных треугольников с равными острыми углами (угол C общий). Следовательно, справедливо равенство

Высота проведенная к стороне треугольника

Это равенство, а также наличие общего угла C позволяют на основании признака подобия треугольников заключить, что и треугольники DCE и ABC подобны. Решение задачи завершено.

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Определение 3 . Ортоцентрическим треугольником (ортотреугольником) называют треугольник, вершинами которого служат основания высот исходного треугольника (рис 6).

Высота проведенная к стороне треугольника

Из определения 3 и следствия 1 вытекает следствие 2.

Следствие 2 . Пусть FDE – ортоцентрический треугольник с вершинами в основаниях высот остроугольного треугольника ABC (рис 7).

Высота проведенная к стороне треугольника

Тогда справедливы равенства

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Из следствия 2 вытекает теорема 2.

Теорема 2 . Высоты остроугольного треугольника являются биссектрисами углов его ортоцентрического треугольника (рис.7).

Доказательство . Воспользовавшись следствием 2, получаем:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

что и требовалось доказать.

Видео:Как построить треугольник по стороне, прилежащему к ней углу и высоте, проведенной к этой сторонеСкачать

Как построить треугольник по стороне, прилежащему к ней углу и высоте, проведенной к этой стороне

Задача Фаньяно

Задача Фаньяно . Рассматриваются всевозможные треугольники DEF , вершины D, E и F которых лежат на сторонах BC, AC и AB остроугольного треугольника ABC соответственно. Доказать, что из всех треугольников DEF наименьшим периметром обладает ортоцентрический треугольник треугольника ABC .

Решение . Пусть DEF – один из рассматриваемых треугольников. Обозначим символом D1 точку, симметричную точке D относительно прямой AC , и обозначим символом D2 точку, симметричную точке D относительно прямой AB (рис.8).

Высота проведенная к стороне треугольника

Поскольку отрезок прямой – кратчайшее расстояние между двумя точками, то периметр треугольника DEF оказывается не меньшим, чем длина отрезка D1D2 . Отсюда вытекает, что при фиксированной точке D наименьшим периметром обладает такой треугольник DEF , вершины F и E которого являются точками пересечения прямой D1D2 с прямыми AB и AC соответственно. Периметр этого треугольника равен длине отрезка D1D2 (рис.9).

Высота проведенная к стороне треугольника

Заметим также, что выполнено равенство

Кроме того, выполнено равенство

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Отсюда вытекает, что длина отрезка D1D2 будет наименьшей тогда, когда длина отрезка AD будет наименьшей, т.е. в том случае, когда отрезок AD является высотой треугольника ABC . Другими словами, наименьшим периметром обладает такой треугольник DEF , у которого вершина D является основанием высоты треугольника ABC , проведённой из вершины A , а вершины E и F построены по описанной выше схеме. Таким образом, среди всевозможных треугольников DEF треугольник с наименьшим периметром является единственным.

Если обозначить длину высоты, проведённой из вершины A , длину стороны AB и радиус описанной около треугольника ABC окружности буквами h, c и R соответственно, то, воспользовавшись теоремой синусов, получим:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Следовательно, наименьший периметр рассматриваемых треугольников DEF равен

Высота проведенная к стороне треугольника

Теперь докажем, что ортоцентрический треугольник и является треугольником с наименьшим периметром. Для этого воспользуемся следующей леммой.

Лемма . Пусть DEF – ортоцентрический треугольник треугольника ABC (рис.10).

Высота проведенная к стороне треугольника

В этом случае отрезок D1D2 проходит через точки F и E .

Доказательство . Заметим, что в силу следствия 2 выполняются равенства:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Кроме того, в силу равенства треугольников DFK и KFD2 , а также в силу равенства треугольников DEL и LED1 выполняются равенства:

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

Высота проведенная к стороне треугольника

откуда вытекает, что углы AEF и D1EL , а также AFE и D2FK являются вертикальными углами. Это означает, что точки D1 , F, E , D2 лежат на одной прямой. Лемма доказана.

Доказательство леммы и завершает решение задачи Фаньяно.

💡 Видео

Геометрия Стороны параллелограмма равны 20 см и 14 см, высота, проведенная к большей стороне, равнаСкачать

Геометрия Стороны параллелограмма равны 20 см и 14 см, высота, проведенная к большей стороне, равна

Задача 6 №27623 ЕГЭ по математике. Урок 70Скачать

Задача 6 №27623 ЕГЭ по математике. Урок 70

В равнобедренном треуг один из углов 120 , основание 4см, найдите высоту проведенную к бок сторонеСкачать

В равнобедренном  треуг один из углов 120 , основание 4см, найдите высоту проведенную к бок  стороне

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Построение высоты в треугольникеСкачать

Построение высоты в треугольнике

Как построить треугольник по двум сторонам и медиане, проведенной к третьей сторонеСкачать

Как построить треугольник по двум сторонам и медиане, проведенной к третьей стороне
Поделиться или сохранить к себе:
ФигураРисунокОписание
Остроугольный треугольникВысота проведенная к стороне треугольника
Прямоугольный треугольникВысота проведенная к стороне треугольника