Выпуклый четырехугольник и окружность свойства

Четырехугольники, вписанные в окружность. Теорема Птолемея
Выпуклый четырехугольник и окружность свойстваВписанные четырехугольники и их свойства
Выпуклый четырехугольник и окружность свойстваТеорема Птолемея

Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Выпуклый четырехугольник и окружность свойства

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Выпуклый четырехугольник и окружность свойства

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Выпуклый четырехугольник и окружность свойства
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Выпуклый четырехугольник и окружность свойства

ФигураРисунокСвойство
Окружность, описанная около параллелограммаВыпуклый четырехугольник и окружность свойстваОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаВыпуклый четырехугольник и окружность свойстваОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииВыпуклый четырехугольник и окружность свойстваОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаВыпуклый четырехугольник и окружность свойстваОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникВыпуклый четырехугольник и окружность свойства

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Выпуклый четырехугольник и окружность свойства
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Выпуклый четырехугольник и окружность свойства

Окружность, описанная около параллелограмма
Выпуклый четырехугольник и окружность свойстваОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Выпуклый четырехугольник и окружность свойстваОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Выпуклый четырехугольник и окружность свойстваОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Выпуклый четырехугольник и окружность свойстваОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Выпуклый четырехугольник и окружность свойства
Окружность, описанная около параллелограмма
Выпуклый четырехугольник и окружность свойства

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаВыпуклый четырехугольник и окружность свойства

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииВыпуклый четырехугольник и окружность свойства

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаВыпуклый четырехугольник и окружность свойства

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникВыпуклый четырехугольник и окружность свойства

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Выпуклый четырехугольник и окружность свойства

Выпуклый четырехугольник и окружность свойства

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Выпуклый четырехугольник и окружность свойства

Видео:№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Выпуклый четырехугольник и окружность свойства

Докажем, что справедливо равенство:

Выпуклый четырехугольник и окружность свойства

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Выпуклый четырехугольник и окружность свойства

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Выпуклый четырехугольник и окружность свойства

откуда вытекает равенство:

Выпуклый четырехугольник и окружность свойства(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Многоугольник. Свойства четырехугольников вписанных в окружность.

Если все вершины какого-нибудь многоугольника (ABCDE) лежат на окружности, то говорят, что этот многоугольник вписан в окружность, или что окружность описана около него.

Выпуклый четырехугольник и окружность свойства

Теорема.

В выпуклом вписанном четырехугольнике сумма противоположных углов равна двум прямым углам (2d).

Обратная теорема:

Если в выпуклом четырехугольнике сумма противоположных углов равна двум прямым углам (2d), то около него можно описать окружность.

Выпуклый четырехугольник и окружность свойства

Пусть ABCDвписанный выпуклый четырехугольник. Необходимо обосновать, что:

Углы B и D, как вписанные будут равны: первый — половиной дуги ADС, второй — половиной дуги ABС. Следовательно, B + D равняется полусумме дуг ADС и ABС, т.е. половиной окружности. Значит, B + D = 2d. Подобно этому убедимся, что A + С= 2d .

Необходимо обосновать, что около такого четырехугольника можно описать окружность. Через какие-нибудь три его вершины, например, A, B, С прочертим окружность (что всегда можно сделать).

Четвертая вершина D должна располагаться на этой окружности, потому что в противном случае угол D лежал бы своей вершиной или внутри круга, или вне его, и тогда этот угол не измерялся бы половиной дуги ABС, поэтому сумма B + D не измерялась бы полусуммой дуг ADС и ABС, т.е. сумма B + D не равнялась бы 2d, что противоречит условию.

Следствия.

1. Из всех параллелограммов только около прямоугольника можно описать окружность.

2. Около трапеции можно описать окружность только тогда, когда она равнобедренная.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Выпуклый четырехугольник

Определения

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Диагональ четырехугольника – отрезок, соединяющий любые две несоседние вершины.

Различают выпуклые и невыпуклые четырехугольники.

Четырехугольник называется выпуклым, если он находится в одной полуплоскости относительно прямой, содержащей любую его сторону.

В школьном курсе рассматриваются только выпуклые четырехугольники. Поэтому далее “выпуклый четырехугольник” будем сокращенно называть “четырехугольник”.

Теорема

Сумма внутренних углов любого четырехугольника равна (360^circ) .

Доказательство

Выпуклый четырехугольник и окружность свойства

Рассмотрим четырехугольник (ABCD) и проведем его диагональ (AC) . Она разбила четырехугольник на два треугольника. Сумма углов любого треугольника равна (180^circ) , следовательно:

[begin 360^circ=180^circ+180^circ=(angle DAC+angle D+angle ACD) + (angle CAB+angle B+angle ACB)=\ =angle D+angle B +(angle DAC+angle CAB)+(angle ACD+angle ACB)=angle D+angle B+angle A+angle C end]

Теорема Вариньона

Выпуклый четырехугольник, вершинами которого являются середины сторон произвольного четырехугольника, является параллелограммом.

Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Средняя линия треугольника”.

Выпуклый четырехугольник и окружность свойства

Проведем диагонали четырехугольника (ABCD) . Рассмотрим (triangle ABC) : (MN) – средняя линия этого треугольника, следовательно, (MNparallel AC) .

Рассмотрим (triangle ADC) : (PK) – средняя линия этого треугольника, следовательно, (PKparallel AC) .

Таким образом, (MNparallel ACparallel PK) .

Аналогичным образом доказывается, что (MPparallel BDparallel NK) .

Следовательно, по определению (MNKP) – параллелограмм.

Теорема

Если в четырехугольнике (ABCD) диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон равны: [AB^2+CD^2=BC^2+AD^2]

Доказательство

По теореме Пифагора:

Из равенств видно, что (AB^2+CD^2=x^2+a^2+y^2+b^2=BC^2+AD^2)

Замечание

Все известные четырехугольники, изучаемые в школьной программе, подчиняются следующей схеме:

Выпуклый четырехугольник и окружность свойства

Таким образом, любой четырехугольник из этой схемы обладает свойствами всех предыдущих четырехугольников, из которых он следует.

Например, прямоугольник обладает свойствами параллелограмма и произвольного выпуклого четырехугольника; квадрат обладает свойствами прямоугольника, параллелограмма, выпуклого четырехугольника.

📸 Видео

Выпуклый четырехугольникСкачать

Выпуклый четырехугольник

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

Многоугольники. Математика 8 класс | TutorOnlineСкачать

Многоугольники. Математика 8 класс | TutorOnline

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Если в четырёхугольник можно вписать окружностьСкачать

Если в четырёхугольник можно вписать окружность

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.Скачать

Сумма внутренних углов многоугольника. Выпуклые и невыпуклые многоугольники. 8 класс.

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.

Теоремы об окружностях для четырехугольниковСкачать

Теоремы об окружностях для четырехугольников

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.
Поделиться или сохранить к себе: