- Понятие криволинейного интеграла
- Криволинейные интегралы первого рода
- Криволинейные интегралы второго рода
- Вычисление криволинейных интегралов первого рода
- Кривая дана в декартовых прямоугольных координатах
- Кривая дана в параметрической форме
- Вычисление криволинейных интегралов второго рода
- Кривая дана в декартовых прямоугольных координатах
- Кривая дана в параметрической форме
- Больше примеров вычисления криволинейных интегралов
- Вычисление длины дуги кривой
- Вычисление площади участка плоскости
- Вычисление площади цилиндрической поверхности
- Вычисление массы материальной кривой
- Определение статических моментов материальной кривой
- Вычисление моментов инерции материальной кривой
- Вычисление координат центра тяжести материальной кривой
- Вычисление работы силы
- Вычислить криволинейный интеграл где l четверть окружности
- Контакты
- Примеры решений криволинейных интегралов
- Криволинейные интегралы 1-го рода: примеры решений
- Криволинейные интегралы 2-го рода: примеры решений
- Моменты инерции: примеры решений
- Другие задания: примеры решений
- 🎥 Видео
Видео:Математический анализ, 47 урок, Криволинейные интегралы первого родаСкачать
Понятие криволинейного интеграла
Криволинейные интегралы — обобщение понятия определённого интеграла на случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:
где f(x, y) — функция двух переменных, а L — кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB.
Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?
Пусть на плоскости расположен отрезок AB некоторой кривой L, а функция двух переменных f(x, y) определена в точках кривой L. Пусть мы выполняем с этим отрезком кривой следующий алгоритм.
- Разделить кривую AB на части точками (рисунки ниже).
- В каждой части свободно выбрать точку M.
- Найти значение функции в выбранных точках.
- Значения функции умножить на
- длины частей в случае криволинейного интеграла первого рода;
- проекции частей на ось координат в случае криволинейного интеграла второго рода.
- Найти сумму всех произведений.
- Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.
Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f(x, y) по кривой AB.
Случай криволинейного интеграла
первого рода
Случай криволинейного интеграла
второго рода
Введём следующие ообозначения.
M i (ζ i ; η i ) — выбранная на каждом участке точка с координатами.
f i (ζ i ; η i ) — значение функции f(x, y) в выбранной точке.
Δs i — длина части отрезка кривой (в случае криволинейного интеграла первого рода).
Δx i — проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).
d = maxΔs i — длина самой длинной части отрезка кривой.
Криволинейные интегралы первого рода
Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:
.
Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл. Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:
.
В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B) считать началом отрезка, а какую концом, то есть
.
Криволинейные интегралы второго рода
Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:
.
В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:
.
При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy. Тогда получим интеграл
.
На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P(x, y) и f = Q(x, y) и интегралы
,
а сумма этих интегралов
называется общим криволинейным интегралом второго рода.
Видео:Криволинейный интеграл II рода вдоль плоской кривойСкачать
Вычисление криволинейных интегралов первого рода
Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.
Кривая дана в декартовых прямоугольных координатах
Пусть на плоскости задана кривая y = y(x) и отрезку кривой AB соответствует изменение переменной x от a до b. Тогда в точках кривой подынтегральная функция f(x, y) = f(x, y(x)) («игрек» должен быть выражен через «икс»), а дифференциал дуги и криволинейный интеграл можно вычислить по формуле
.
Если интеграл проще интегрировать по y, то из уравнения кривой нужно выразить x = x(y) («икс» через «игрек»), где и интеграл вычисляем по формуле
.
Пример 1. Вычислить криволинейный интеграл
,
где AB — отрезок прямой между точками A(1; −1) и B(2; 1) .
Решение. Составим уравнение прямой AB , используя формулу (уравнение прямой, проходящей через две данные точки A(x 1 ; y 1 ) и B(x 2 ; y 2 ) ):
.
Из уравнения прямой выразим y через x :
.
Тогда и теперь можем вычислять интеграл, так как у нас остались одни «иксы»:
Кривая дана в параметрической форме
Пусть в пространстве задана кривая
Тогда в точках кривой функцию нужно выразить через параметр t () а дифференциал дуги , поэтому криволинейный интеграл можно вычислить по формуле
Аналогично, если на плоскости задана кривая
,
то криволинейный интеграл вычисляется по формуле
.
Пример 2. Вычислить криволинейный интеграл
,
где L — часть линии окружности
,
находящаяся в первом октанте.
Решение. Данная кривая — четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра . Так как
,
то дифференциал дуги
Подынтегральную функцию выразим через параметр t :
.
Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:
Видео:Математический анализ, 48 урок, Криволинейные интегралы второго родаСкачать
Вычисление криволинейных интегралов второго рода
Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.
Кривая дана в декартовых прямоугольных координатах
Пусть дана кривая на плоскости уравнением функции «игрек», выраженной через «икс»: y = y(x) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение «игрека» через «икс» и определим дифференциал этого выражения «игрека» по «иксу»: . Теперь, когда всё выражено через «икс», криволинейный интеграл второго рода вычисляется как определённый интеграл:
Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции «икс», выраженной через «игрек»: x = x(y) , . В этом случае формула для вычисления интеграла следующая:
Пример 3. Вычислить криволинейный интеграл
, если
а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке — синяя). Напишем уравнение прямой и выразим «игрек» через «икс»:
.
Получаем dy = dx . Решаем данный криволинейный интеграл:
б) если L — дуга параболы y = x² , получим dy = 2xdx . Вычисляем интеграл:
В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.
Теорема. Если функции P(x,y) , Q(x,y) и их частные производные , — непрерывные в области D функции и в точках этой области частные производные равны, то криволинейный интеграл не зависит от пути интегрирования по линии L , находящейся в области D .
Кривая дана в параметрической форме
Пусть в пространстве дана кривая
.
,
а в подынтегральные функции подставим
—
выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:
Пример 4. Вычислить криволинейный интеграл
,
если L — часть эллипса
отвечающая условию y ≥ 0 .
Решение. Данная кривая — часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра .
,
можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:
Если дан криволинейный интеграл и L — замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина.
Видео:Криволинейный интеграл 1-го рода ★ Криволинейный интеграл по длине дуги ★ ∫(x+y)dsСкачать
Больше примеров вычисления криволинейных интегралов
Пример 5. Вычислить криволинейный интеграл
,
где L — отрезок прямой между точками её пересечения с осями координат.
Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим , . Подставив x = 0 , получим , . Таким образом, точка пересечения с осью Ox — A(2; 0) , с осью Oy — B(0; −3) .
Из уравнения прямой выразим y :
.
, .
Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:
В подынтегральном выражении выделяем множитель , выносим его за знак интеграла. В получившемся после этого подынтегральном выражении применяем подведение под знак дифференциала и окончательно получаем:
Пример 6. Вычислить криволинейный интеграл
,
где L — дуга параболы между точками О(0; 0) и B(2; 2) .
Решение. Так как , то .
Теперь можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:
Пример 7. Вычислить криволинейный интеграл
,
где L — дуга астроиды
в первом квадранте.
Решение. В первом квадранте . Определим дифференциал дуги:
Представляем криволинейный интеграл в виде определённого интеграла и вычисляем его:
Пример 8. Вычислить криволинейный интеграл
,
где L — первая арка циклоиды
Решение. Циклоида образует первую арку при изменении параметра t от 0 до 2π . Определим дифференциал дуги:
.
Подставим в криволинейный интеграл dl и y , выраженные через параметр t и получаем:
Пример 9. Вычислить криволинейный интеграл
,
где L — отрезок прямой от точки A(1; 1) до точки B(3; 5) .
Решение. Составим уравнение прямой AB :
.
Из полученного уравнения прямой выразим «игрек»:
Поэтому и теперь можем вычислить данный криволинейный интеграл:
Пример 10. Вычислить криволинейный интеграл
,
где L — первая арка циклоиды
Решение. Из уравнений кривой следует
.
Так как циклоида образует первую арку при изменении параметра t от 0 до 2π , то получаем соответствующие пределы интегрирования. Решаем данный криволинейный интеграл:
.
Уравнением кривой M 0 M 1 является y = 1 , тогда dy = 0 , на кривой M 1 M x — константа, значит, dx = 0 . Продолжаем и завершаем решение:
Вычисление длины дуги кривой
Если подынтегральная функция равна единице, то криволинейный интеграл первого рода равен длине дуги кривой L:
.
Пример 12. Вычислить длину дуги кривой
,
где .
Решение. Составляем криволинейный интеграл первого рода:
.
Определим производную «игрека»:
.
Продолжаем и завершаем решение:
Вычисление площади участка плоскости
Если границей участка D плоскости является кривая L, то площадь участка D можно вычислить в виде криволинейного интеграла второго рода
.
Пример 13. Вычислить площадь участка плоскости, ограниченного эллипсом
.
Решение. Площадь участка плоскости можно вычислить как криволинейный интеграл второго рода
,
где L — замкнутая линия, ограничивающая участок. Так как
.
Вычисление площади цилиндрической поверхности
Пусть на плоскости xOy дана гладка кривая L, в точках которой определена непрерывная функция двух переменных . Построим цилиндрическую поверхность, образующая которой параллельна оси Oz, и которая заключена между кривой L и поверхностью . Площадь этой цилиндрической поверхности можно вычислить по формуле
.
Вычисление массы материальной кривой
Если L — материальная кривая с плотностью , то массу материальной кривой можно вычислить по формуле
Определение статических моментов материальной кривой
Статические моменты материальной кривой с плотностью относительно осям координат вычисляются по формулам
,
.
Вычисление моментов инерции материальной кривой
Моменты инерции материальной кривой с плотностью относительно осей координат и начала системы координат можно вычислить по формулам
,
,
.
Вычисление координат центра тяжести материальной кривой
Координаты центра тяжести материальной кривой с плотностью можно определить по формулам
,
.
Вычисление работы силы
Если под воздействием переменной силы материальная точка перемещается из точки M в точку N по кривой L=MN, то приложенную работу можно вычислить по формуле
.
Пример 14. В каждой точке плоскости действует сила . Вычислить работу, совершаемую силой при перемещении единицы массы по дуге параболы из точки O(0;0) в точку А(4;2) .
Решение. Работу силы вычислим как криволинейный интеграл второго рода
.
Используя уравнение параболы, производим замену переменной
Видео:Криволинейный интеграл первого родаСкачать
Вычислить криволинейный интеграл где l четверть окружности
Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!