Равные векторы в кубе

Красивая математика или как представить 7-ми мерный куб

Равные векторы в кубе

Однажды от своих родственников я услышал такую фразу: «Люди на МехМате МГУ не могут быть нормальными, ведь они могут представить себе 7-ми мерное пространство!»

И когда я это услышал, мне тоже показалось, что это — что-то нереальное, невозможное. Но вот прошли года, и когда я снова услышал эту фразу, меня повергло в шок — я тоже могу представить 7-ми мерное пространство и не сломаться. Или я уже не из тех, кто может спокойно гулять по улицам?

Ответ, казалось бы, так прост и так несложен, но многие просто не задумывались над этим вопросом, и поэтому это кажется чем-то странным и нереальным.

Так вот, в данной статье я хочу задуматься, ответить и рассказать, что же за простой ответ скрывается под таким странным вопросом: «Что такое 7-ми мерное пространство?»

В данной статье я попытаюсь рассказать свое понимание многомерного пространства, как я представляю его в своей голове. Возможно, что-то может показаться немного нестрогим – так оно и есть, понятное дело, я пропускаю некоторые детали и пытаюсь писать максимально научно-популярным языком. Надеюсь, Вам понравится мое видение многомерного пространства и Вы почувствуете ту же красоту математики, которую я вижу в данной иллюстрации чего-то непонятного.

Я постараюсь описать некоторые детали с самых азов, вкратце, чтобы любой желающий мог бы разобраться в моих словах.

Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Оглавление

Выражаю благодарность @AnnRemi за помощь в редактировании и опускании на землю моих амбиций по статье.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Начало начал, или что такое вектор

Вектор: наверняка каждый сталкивался с таким понятием в школе, это не сложно и очень понятно.

Вектором называется направленный отрезок или просто луч, имеющий конкретную длину.

То есть если луч, как и прямая — понятие бесконечное и простирается вправо и влево в бесконечность, то вектор — понятие ограниченное длиной. Обычная стрелочка, нарисованная на бумаге — вектор. Линейкой мы можем измерить длину этой стрелочки, а направление «этой длины» показывает сама стрелка. Важно понимать, что нам не важно, откуда отложен наш вектор, из какой точки. Нужно знать только длину и направление. Обычно мы изображаем наш вектор в осях координат — так удобно находить его параметры.

Равные векторы в кубеВектор AB в осях координат

Для удобства мы отмечаем на оси Х и на оси У проекции наших точек. Теперь, чтобы посчитать длину нашего вектора достаточно воспользоваться Теоремой Пифагора

Равные векторы в кубе

Направление, или угол наклона относительно оси Х легко посчитать, например, через тангенс, ведь мы знаем длины обоих катетов треугольника

Равные векторы в кубе

Видео:Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать

Вектор. Определение. Коллинеарные векторы. Равные векторы.

Понятие радиус-вектора

Как мы уже увидели, в векторе нам важны только две вещи: длина и направление, так зачем его рисовать где-то в середине нашей координатной плоскости. Давайте сместим наш вектор к началу оси координат. Тогда нам надо будет хранить только координаты конца вектора — а координаты начала вектора у нас будут нулевыми.

Равные векторы в кубеСмещенная ось координат

Так теперь надо будет меньше мучаться — храним в векторе просто координаты его конца.

Равные векторы в кубе

Такие вектора называются в школе радиус-векторами, но в дальнейшем мы будем все вектора брать радиус-векторами, ведь, как мы помним, все вектора имеющие одно направление и одну длину — одинаковые, один и тот же вектор, так почему бы нам не взять тот, который удобнее всего записывается.

Видео:Равные векторы в пространстве. Коллинеарные векторы.Скачать

Равные векторы в пространстве. Коллинеарные векторы.

Трехмерный вектор

Если мы уже разобрались, что такое вектор на плоскости — давайте перейдем к вектору в трехмерном пространстве — в объемном мире.

Достаточно просто представить себе стрелку в объеме — достаточно вспомнить, как Вы что-то измеряли рулеткой. Прислонили конец к шкафу, другой к полу, и померили его диагональ. Ну или не шкаф. каждому свое. Но точно можно сказать, что такое трехмерный вектор.

Но давайте немного формулизируем то, что мы поняли. Представим трехмерные координаты и в них наш радиус-вектор AB.

Равные векторы в кубеТрехмерный вектор AB

Понятно, что нам теперь совсем не хватит двух координат для описания вектора AB. Так что давайте добавим третью координату, просто дописав ее в конце.

Равные векторы в кубе

Хммм. интересно, а по какому признаку мы можем вот так просто приписывать координаты? Может, можно просто так добить вектор до семимерного? Ну в принципе, нас никто остановить не может, и мы именно так и поступим, но сначала немного окунемся в линейную алгебру.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Базис в пространстве

Базис — упорядоченный набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора.

Линейная комбинация – это сумма некоторого набора элементов множества с допустимыми коэффициентами.

Также я собираюсь использовать в дальнейшем удобное следствие определения базиса: мы можем расширять наш базис с помощью векторов, линейно независимых с базисными.

Что значит расширить базис? Добавить еще один вектор, тем самым расширяя наше пространство еще в одном направлении.

Выше мы уже научились строить трехмерное пространство — просто объемный мир, в котором мы живем. Давайте попробуем расширить наш базис. Самым очевидным расширением базиса будет добавление времени, как еще одного параметра. То есть четырехмерное измерение — это объемная жизнь с привязкой ко времени. Ну разве это не похоже на обычную жизнь человека? То есть все это время мы жили в четырехмерном пространстве, а не трехмерном.

И, как не сложно заметить, время линейно независимо от объема, то есть наше расширение базиса вполне корректно.

Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

7ми мерное пространство и почему только 7ми?

Как нам представить 5ти мерное пространство? Но мы же уже сказали, что на самом деле пространство — это то, что его задает — базис. То есть давайте теперь мыслить о пространстве, как о наборе параметров каждой его точки. Например для трехмерного объекта мы помним 3 координаты в пространстве — по x, y, z. И у нас это не вызывает диссонанса.

Давайте к координатам припишем еще и время, в которое у нас наблюдалась данное расположение тел. Например, у нас катится шар и мы следим за положением его центра. В момент времени 0 шар покоился. В 0,0. 01 он уже сместился. В момент времени 9. 9,0 он уже находится в совершенно другом месте. Но зачем нам так думать? Пусть эта точка шара существует одновременно везде, где проехался шар, только мы будем помнить, что в каждой точке мы еще приписываем время, когда шар был именно в данной позиции. Вот Вам и 4х мерное пространство — не сложно.

Казалось, так можно навесить еще какие-то параметры, такие как скорость ветра, влажность воздуха, сила трения и так далее, но давайте не будем извращаться и перейдем к более жизненному понятию.

Допустим у нас есть разные гаечки (прошу прощения, если я ошибусь в параметрах или названиях, я совсем не инженер). Для удобной фасовки и продажи гаек надо распределить их на группы одинаковых. Но как мы будем их отличать? Давайте запишем какой-то набор параметров (не претендующий на правильность):

Сплав метала гайки

Внутреннее сечение гайки

Внешняя форма гайки

Направление резьбы гайки

Максимальная нагрузка на гайку

Самозажимающаяся ли гайка?

Максимальная температура, при которой гайка выдерживает достаточную нагрузку

Понятно, что таких параметров может быть сколь угодно много. Но мы остановимся на 7ми — именно столько заявлено в заголовке статьи. Важно помнить! каждый параметр обязан быть независим от любого предыдущего. В нашем случае это условие выполняется: направление резьбы никак не зависит от сплава метала или от внутреннего сечения гайки. И так с каждым из параметров.

То есть только что мы создали свой, очень странный базис, где элементами нашего пространства выступают гайки, и мы их можем удобно расфасовать. Это и есть элементарное представление нашего 7ми и не только 7ми, но и большего, пространства.

Видео:Равенство векторов. 9 класс.Скачать

Равенство векторов. 9 класс.

Пространство — не куб!

В заголовке статьи я обещал куб, но пока говорил только о пространстве. Давайте определим, что же такое куб.

Например, в 2х мерном пространстве куб, очевидно,- это квадрат. То есть объект с точками вершинами:

Равные векторы в кубе

В трехмерном пространстве куб — есть куб. С координатами:

Равные векторы в кубе

Как мы заметили, в двумерном пространстве у куба 4 = 2^2 вершин, в трехмерном 8 = 2^3. Совпадение? Маловероятно. Ну и правильно, ведь из простейшей комбинаторики мы помним, что количество вершин равно 2^n для n-мерного куба. Ведь мы либо берем каждый из базисных n векторов, либо нет.

Тогда для построение 7ми или n-мерного куба нам достаточно взять точки с фиксированными координатами (0 или a) по каждой из осей.

Видео:Коллинеарные векторы. Равные векторыСкачать

Коллинеарные векторы. Равные векторы

Интересный факт

Именно из-за удобства понимания и описания n-мерного куба мы меряем любую n-мерную поверхность таким способом. Площадь квартиры с помощью квадратных метров, длину прямой в метрах, объем в кубических метрах. Это все кубы разной размерности. И в математике нам очень удобно оперировать именно такими понятиями. Примерно так мы определяем меру множества, которая очень важна для теории интегралов, теории вероятностей, теории меры и очень много где еще.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Послесловие

Как Вы, наверное, заметили, я привожу совсем иное понимание многомерного куба, в отличие от общепринятого.

Не то, чтобы красивые картинки многомерных кубов не вызывали у меня восхищения – совсем нет, но в этом есть что-то нереальное, непонятное и неприложимое. Я совсем не претендую на прикладное значение сортировки гаек, но мне кажется довольно захватывающим такое представление многомерности: как что-то такое далекое может быть таким емким.

Равные векторы в кубе4х мерный куб – Тессеракт

На самом деле я просто не имею настолько развитого пространственного воображения: я не понимаю, как можно визуализировать 4х, 5ти и более мерный куб на 2D картинке.

Также такая иллюстрация не позволяет представить, как увеличить пространство еще в одном направлении. Так что именно данная тема не рассматривается в моей статье, но, если Вас заинтересовал Тессеракт, есть огромная куча других, очень интересных, статей, описывающих его построение и даже расширение.

Видео:определение вектора, коллинеарные векторы, равные векторыСкачать

определение вектора, коллинеарные векторы, равные векторы

Геометрия. 10 класс

Сумма векторов

В кубе назовите вектор, равный сумме $overrightarrow+overrightarrow <B_C_>+overrightarrow<DD_> $

Равные векторы в кубе

Вектор в пространстве

Установите соответствие между выражением и вектором $Х$

Длина вектора

Дано: АВ = 3 ВС = 4 СС1 = 12

Равные векторы в кубе

Длина вектора АС1 =

Длина вектора

Диагонали параллелепипеда пересекаются в точке О.

Варианты ответа (введите порядковый номер):

Вектор в пространстве

Упростите выражение и выберите правильный результат преобразования:

Вектор в пространстве

В тетраэдре ABCD точка Е — середина АD.

Докажите, что $overrightarrow=frac(overrightarrow+overrightarrow)$

Равные векторы в кубе

Сложим полученные равенства $overrightarrow+overrightarrow+overrightarrow+overrightarrow=2overrightarrow$

Так как $overrightarrow+overrightarrow=0$, то $overrightarrow+overrightarrow=2overrightarrow$, значит $overrightarrow=frac(overrightarrow+overrightarrow)$

Видео:ВЕКТОРЫ: понятие вектора, длина вектора, коллинеарные векторы, равные и противоположные векторыСкачать

ВЕКТОРЫ: понятие вектора, длина вектора, коллинеарные векторы, равные  и противоположные векторы

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Равные векторы в кубе

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Равные векторы в кубе

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.

Равные векторы в кубе
Равные векторы в кубе

Длина вектора Равные векторы в кубев пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Равные векторы в кубе

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Равные векторы в кубе

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Равные векторы в кубе

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы Равные векторы в кубеи Равные векторы в кубе.

Равные векторы в кубе

Равные векторы в кубе

Произведение вектора на число:

Равные векторы в кубе

Скалярное произведение векторов:

Равные векторы в кубе

Косинус угла между векторами:

Равные векторы в кубе

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Равные векторы в кубе

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами Равные векторы в кубеи Равные векторы в кубе. Для этого нужны их координаты.

Равные векторы в кубе

Запишем координаты векторов:

Равные векторы в кубе

Равные векторы в кубе

и найдем косинус угла между векторами Равные векторы в кубеи Равные векторы в кубе:

Равные векторы в кубе

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Равные векторы в кубе

Координаты точек A, B и C найти легко:

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Из прямоугольного треугольника AOS найдем Равные векторы в кубе

Координаты вершины пирамиды: Равные векторы в кубе

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Равные векторы в кубе

Равные векторы в кубе

Найдем координаты векторов Равные векторы в кубеи Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

и угол между ними:

Равные векторы в кубе

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Равные векторы в кубе

Запишем координаты точек:

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Равные векторы в кубе

Найдем координаты векторов Равные векторы в кубеи Равные векторы в кубе, а затем угол между ними:

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать

Сложение и вычитание векторов. Практическая часть. 11 класс.

Плоскость в пространстве задается уравнением:

Равные векторы в кубе

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Равные векторы в кубе

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Равные векторы в кубе

Подставим в него по очереди координаты точек M, N и K.

Равные векторы в кубе

То есть A + C + D = 0.

Равные векторы в кубеРавные векторы в кубе

Аналогично для точки K:

Равные векторы в кубе

Получили систему из трех уравнений:

Равные векторы в кубе

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Равные векторы в кубе

Равные векторы в кубе

Выразим C и B через A и подставим в третье уравнение:

Равные векторы в кубе

Решив систему, получим:

Равные векторы в кубе

Уравнение плоскости MNK имеет вид:

Равные векторы в кубе

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Равные векторы в кубе

Вектор Равные векторы в кубе— это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку Равные векторы в кубеимеет вид:

Равные векторы в кубе

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Равные векторы в кубе

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Равные векторы в кубе

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Равные векторы в кубе

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор Равные векторы в кубеперпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть: Равные векторы в кубе

Напишем уравнение плоскости AEF.

Равные векторы в кубе

Берем уравнение плоскости Равные векторы в кубеи по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Равные векторы в кубеРавные векторы в кубе

Равные векторы в кубе

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF: Равные векторы в кубе

Нормаль к плоскости AEF: Равные векторы в кубе

Найдем угол между плоскостями:

Равные векторы в кубе

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Равные векторы в кубе

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор Равные векторы в кубеили, еще проще, вектор Равные векторы в кубе.

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Равные векторы в кубе

Равные векторы в кубе

Координаты вектора Равные векторы в кубе— тоже:

Равные векторы в кубе

Находим угол между плоскостями, равный углу между нормалями к ним:

Равные векторы в кубе

Зная косинус угла, находим его тангенс по формуле

Равные векторы в кубе

Получим:
Равные векторы в кубе

Ответ: Равные векторы в кубе

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть Равные векторы в кубе— вектор, лежащий на прямой m (или параллельный ей), Равные векторы в кубе— нормаль к плоскости α.

Равные векторы в кубе

Находим синус угла между прямой m и плоскостью α по формуле:

Равные векторы в кубе

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Находим координаты вектора Равные векторы в кубе.

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор Равные векторы в кубе.

Найдем угол между прямой и плоскостью:

Равные векторы в кубе

Ответ: Равные векторы в кубе

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

Равные векторы в кубе

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = Равные векторы в кубе, AD = Равные векторы в кубе. Высота параллелепипеда AA1 = Равные векторы в кубе. Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Равные векторы в кубе

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Равные векторы в кубеРавные векторы в кубе

Решим эту систему. Выберем Равные векторы в кубе

Тогда Равные векторы в кубе

Уравнение плоскости A1DB имеет вид:

Равные векторы в кубе

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

Равные векторы в кубе

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

🔍 Видео

Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Равные и противоположные векторы в параллелограмме, трапеции, треугольнике и отрезкеСкачать

Равные и противоположные векторы в параллелограмме, трапеции, треугольнике и отрезке

8 класс, 41 урок, Равентво векторовСкачать

8 класс, 41 урок, Равентво векторов

Понятие вектора. Коллинеарные векторы.Скачать

Понятие вектора. Коллинеарные векторы.

10 класс, 39 урок, Равенство вектораСкачать

10 класс, 39 урок, Равенство вектора

Векторы (коллинеарные, однонаправленные, равные). Разбор темы, понятия и примеры. Геометрия 9 классСкачать

Векторы (коллинеарные, однонаправленные, равные). Разбор темы, понятия и примеры. Геометрия 9 класс
Поделиться или сохранить к себе: