Теорема 1 . В любом треугольнике биссектрисы двух внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются в одной точке.
Доказательство . Рассмотрим произвольный треугольник ABC и продолжим, например, стороны BA и BC за точки A и C соответственно (рис.1).
Проведём биссектрисы углов DAC и ECA , которые являются внешними углами треугольника ABC . Обозначим точку пересечения этих биссектрис буквой O . Докажем, что точка O лежит на биссектрисе угла ABC , который является внутренним углом треугольника ABC , не смежным с внешними углами DAC и ECA . С этой целью опустим из точки O перпендикуляры OF , OG и OH на прямые AB , AC и BC соответственно. Поскольку AO – биссектриса угла DAC , то справедливо равенство:
Следовательно, справедливо равенство
Замечание 1 . В ходе доказательства теоремы 1 мы установили, что справедливы равенства
откуда вытекает, что точки F , G и H лежат на одной окружности с центром в точке O .
Определение . Окружность называют окружностью, вневписанной в треугольник , или вневписанной окружностью, если она касается касается одной стороны треугольника и продолжений двух других сторон (рис.2).
Замечание 2 . У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.
Замечание 3 . Центр вневписанной окружности, изображенной на рисунке 2, лежит на биссектрисе угла B , а окружность касается стороны b . Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b , и обозначать её радиус символом rb .
Теорема 2 . Пусть вневписанная окружность касается стороны AC треугольника ABC . Тогда отрезки касательных касательных от вершины B до точек касания с вневписанной окружностью равны полупериметру треугольника.
Доказательство . Снова рассмотрим рисунок 2 и докажем, что выполнено равенство
где a, b, c – стороны треугольника ABC . Действительно, отрезки AG и AF равны, как отрезки касательных к окружности, выходящих из точки A . Отрезки CG и CH равны, как отрезки касательных к окружности, выходящих из точки C . Отрезки BF и BH равны, как отрезки касательных к окружности, выходящих из точки B . Отсюда получаем:
где буквой p обозначен полупериметр треугольника ABC . Теорема 2 доказана.
Теорема 3 . Радиус вневписанной окружности , касающейся стороны b , вычисляется по формуле
где буквой S обозначена площадь треугольника ABC , а буквой p обозначен полупериметр треугольника ABC .
Доказательство . Снова рассмотрим рисунок 2 и заметим, что выполнены равенства
Следовательно, справедливо равенство
что и требовалось доказать.
Следствие . Радиусы двух других вневписанных в треугольник ABC окружностей вычисляются по формулам:
Теорема 4 . Если обозначить буквой r радиус вписанной в треугольник ABC окружности, то будет справедлива формула:
Складывая эти формулы и воспользовавшись формулой для радиуса вписанной окружности
,
что и требовалось доказать.
Теорема 5 . Площадь треугольника можно вычислить по формуле
Доказательство . Перемножим формулы
что и требовалось доказать.
Теорема 6 . Если обозначить буквой R радиус описанной около треугольника ABC окружности, то будет справедлива формула:
Доказательство . Воспользовавшись формулами для радиусов вписанной и вневписанных окружностей, а также формулой Герона, получим
Преобразуем выражение, стоящее в квадратной скобке:
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
МАТЕМАТИКА
Рассмотрим произвольный треугольник АВС и проведем биссектрису . Затем продолжим эту биссектрису за точку до пересечения в точке с биссектрисой внешнего угла при вершине В (рис.1). Поскольку точка лежит на биссектрисе угла А, то она равноудалена от прямых АВ и ВС. Следовательно, она равноудалена и от прямых АС и ВС, а значит, лежит на биссектрисе внешнего угла при вершине С.
Продолжение биссектрисы треугольника, проведенной из одной из вершин, пересекается с биссектрисами внешних углов при двух других вершинах в одной точке.
Поскольку точка равноудалена от сторон внешних углов при вершинах В и С, то окружность с центром , касающаяся стороны ВС, касается также и продолжений сторон АВ и АС (рис.2).
Эта окружность называется вневписанной окружностью треугольника АВС. Ясно, что любой треугольник имеет три вневписанных окружности. (рис.3).
Положение центра вневписанной окружности можно охарактеризовать так: это точка пересечения биссектрис внешних углов при вершинах В и С. Можно охарактеризовать его и совершенно иначе, если заметить, что точки , В и С и центр О вписанной в треугольник АВС окружности лежат на одной окружности с диаметром (рис.4), – это следует из того, что углы и прямые.
Можно сказать, таким образом, что точка представляет собой точку пересечения прямой и окружности, описанной около треугольника ВОС.
Принимая во внимание замечание в конце статьи (Точка пересечения продолжения биссектрисы, проведенной из одной из вершин треугольника, с описанной окружностью равноудалена от двух других вершин и центра вписанной окружности), из этого можно сделать еще один вывод:
Точки, в которых вписанная и вневписанная окружности касаются стороны треугольника, симметричны относительно середины этой стороны.
В самом деле, пусть D – точка пересечения продолжения биссектрисы с описанной около треугольника АВС окружностью (рис.5). Тогда согласно упомянутому замечанию DB = DC = DO. Следовательно, D – центр окружности, описанной около четырехугольника . Проведем из точек O, D и перпендикуляры к стороне ВС и обозначим их основания буквами P, Q и R соответственно (рис.6). Точки P и R являются точками касания вписанной и вневписанной окружностей со стороной ВС, а точка Q – середина этой стороны. Но , значит, и PQ = QR, то есть точки P и R симметричны относительно точки Q.
Точка касания вневписанной окружности со стороной треугольника обладает еще одним замечательным свойством:
Прямая, проведенная через вершину треугольника и точку, в которой вневписанная окружность касается противоположной стороны, делит периметр треугольника пополам.
Можно убедиться в этом самостоятельно, используя рис. 7.
При решении задач, связанных с нахождением площади треугольника, часто полезной бывает следующая формула. Пусть – радиус вневписанной окружности, касающейся стороны треугольника, равной а, р – полупериметр треугольника. Тогда
Обозначим эту формулу (1).
Действительно, если две другие стороны данного треугольника равны b и c (рис. 8), то
Замечание. Выпуклый четырехугольник может не иметь вписанной окружности, но он всегда имеет четыре вневписанные окружности.
Любопытно, что для площади S такого четырехугольника имеет место соотношение, похожее на формулу (1).
В самом деле, пусть стороны данного четырехугольника равны последовательно a, b, c и d; p – его полупериметр, и – радиусы вневписанных окружностей, касающихся сторон, равных а и с. Допустим, что две другие стороны не параллельны (случай параллельных сторон рассмотрите самостоятельно). Продолжим их до пересечения в точке М (рис.9).
Пусть и – точки, в которых продолжения одной из сторон касаются вневписанных окружностей, причем лежит на окружности, вписанной в маленький треугольник. Площадь S четырехугольника равна, очевидно, разности площадей большого и маленького треугольников. Периметр маленького треугольника равен , а периметр большого треугольника равен
Применяя к большому треугольнику формулу (1), а к меньшему – формулу , выражающую его площадь через радиус вписанной окружности и полупериметр, получаем:
Обозначим эту формулу (2)
С другой стороны, из подобия треугольников и ( и – центры вневписанных окружностей) находим . Но отрезок равен полупериметру большого треугольника, то есть .
Поэтому из полученной пропорции можно найти :
Подставляя это выражение в равенство (2) получим:
Спасибо, что поделились статьей в социальных сетях
Источник: Атанасян Л.С. Геометрия. Дополнительные главы к учебнику 8 кл.: Учебное пособие для учащихся школ и классов с углубленным изучением математики.
Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать
Об отрезках касательной к окружности
Разделы: Математика
Чаще всего именно геометрические задачи вызывают затруднения у абитуриентов, выпускников, участников математических олимпиад. Если посмотреть статистику ЕГЭ 2010 года, то видно, что к геометрической задаче С4 приступило около 12% участников, а получило полный балл только 0,2% участников, а в целом задача оказалась самой сложной из всех предложенных.
Очевидно, что чем раньше мы предложим школьникам красивые или неожиданные по способу решения задачи, тем больше вероятность заинтересовать и увлечь всерьёз и надолго. Но, как же трудно найти интересные и сложные задачи на уровне 7 класса, когда только начинается систематическое изучение геометрии. Что можно предложить интересующемуся математикой школьнику, знающему только признаки равенства треугольников, свойства смежных и вертикальных углов? Однако, можно ввести понятие касательной к окружности, как прямой, имеющей с окружностью одну общую точку; принять, что радиус, проведённый в точку касания, перпендикулярен касательной. Конечно, стоит рассмотреть все возможные случаи расположения двух окружностей и общих касательных к ним, которых можно провести от нуля до четырёх. Доказав ниже предложенные теоремы, можно значительно расширить набор задач для семиклассников. При этом попутно доказать важные или просто интересные и занимательные факты. Причём, поскольку многие утверждения не входят в школьный учебник, то обсуждать их можно и на занятиях кружка и с выпускниками при повторении планиметрии. Актуальными эти факты оказались в прошлом учебном году. Так как многие диагностические работы и сама работа ЕГЭ содержали задачу, для решения которой необходимо было использовать доказываемое ниже свойство отрезка касательной.
Т1 Отрезки касательных к окружности, проведённые из
одной точки равны (рис. 1)
Вот именно с теоремой можно сначала познакомить семиклассников.
В процессе доказательства использовали признак равенства прямоугольных треугольников, сделали вывод о том, что центр окружности лежит на биссектрисе угла ВСА.
Попутно вспомнили, что биссектриса угла есть геометрическое место точек внутренней области угла, равноудалённых от его сторон. На этих доступных даже только начинающим изучать геометрию фактах основывается решение уже далеко нетривиальной задачи.
1. Биссектрисы углов А, В и С выпуклого четырёхугольника АВСD пересекаются в одной точке. Лучи АВ и DC пересекаются в точке Е, а лучи
ВС и АD в точке F. Докажите, что у невыпуклого четырёхугольника AECF суммы длин противоположных сторон равны.
Решение (рис. 2). Пусть О – точка пересечения данных биссектрис. Тогда О равноудалена от всех сторон четырёхугольника АВСD, то есть
является центром окружности вписанной в четырёхугольник. По теореме 1 верны равенства: AR = AK, ER = EP, FT = FK. Почленно сложим левые и правые части, получим верное равенство:
Рассмотрим необычную по формулировке задачу, для решения которой достаточно знание теоремы 1.
2. Существует ли n-угольник, стороны которого последовательно 1, 2, 3, …, n, в который можно вписать окружность?
Решение. Допустим, такой n-угольник существует. А1А2 =1, …, Аn-1Аn = n – 1, АnА1 = n. B1, …, Bn – соответствующие точки касания. Тогда по теореме 1 A1B1 = A1Bn Можно обобщить этот факт – суммы сторон описанного чётноугольника, взятых через одну, равны. Например, для шестиугольника ABCDEF верно: AB + CD + EF = BC + DE + FА.
3. МГУ. В четырёхугольнике ABCD расположены две окружности: первая окружность касается сторон AB, BC и AD, а вторая – сторон BC, CD и AD. На сторонах BC и AD взяты точки E и F соответственно так, отрезок EF касается обеих окружностей, а периметр четырёхугольника ABEF на 2p больше периметра четырёхугольника ECDF. Найти AB, если CD = a.
Решение (рис. 1). Так как четырёхугольники ABEF и ECDF вписанные, то по теореме 2 РABEF = 2(AB + EF) и РECDF = 2(CD + EF), по условию
РABEF – РECDF = 2(AB + EF) – 2(CD + EF) = 2p. AB – CD = p. АВ = а + р.
Опорная задача 1. Прямые АВ и АС – касательные в точках В и С к окружности с центром в точке О. Через произвольную точку Х дуги ВС
проведена касательная к окружности, пересекающая отрезки АВ и АС в точках М и Р соответственно. Докажите, что периметр треугольника АМР и величина угла МОР не зависят от выбора точки Х.
Решение (рис. 5). По теореме 1 МВ = МХ и РС = РХ. Поэтому периметр треугольника АМР равен сумме отрезков АВ и АС. Или удвоенной касательной, проведённой к вневписанной окружности для треугольника АМР. Величина угла МОР измеряется половиной величины угла ВОС, который не зависит от выбора точки Х.
Опорная задача 2а. В треугольник со сторонами а, b и c вписана окружность, касающаяся стороны АВ и точке К. Найти длину отрезка АК.
Решение (рис. 6). Способ первый (алгебраический). Пусть АК = АN = x, тогда BK = BM = c – x, CM = CN = a – c + x. АС = АN + NC, тогда можем составить уравнение относительно х: b = x + (a – c + x). Откуда .
Способ второй (геометрический). Обратимся к схеме. Отрезки равных касательных, взятые по одному, в сумме дают полупериметр
треугольника. Красный и зелёный составляют сторону а. Тогда интересующий нас отрезок х = р – а. Безусловно, полученные результаты совпадают.
Опорная задача 2б. Найти длину отрезка касательной АК, если К – точка касания вневписанной окружности со стороной АВ. Решение (рис. 7). АК = АM = x, тогда BK = BN = c – x, CM = CN. Имеем уравнение b + x = a + (c – x). Откуда . Заметим, что из опорной задачи 1 следует, что СМ = р Δ АВС. b + x = p; х = р – b. Полученные формулы имеют применение в следующих задачах.
4. Найдите радиус окружности, вписанной в прямоугольный треугольник с катетами а, b и гипотенузой с. Решение (рис. 8). Так как OMCN – квадрат, то радиус вписанной окружности равен отрезку касательной CN. .
5. Докажите, что точки касания вписанной и вневписанной окружности со стороной треугольника симметричны относительно середины этой стороны.
Решение (рис. 9). Заметим, АК – отрезок касательной вневписанной окружности для треугольника АВС. По формуле (2) . ВМ – отрезок касательной вписанной окружности для треугольника АВС. По формуле (1) . АК = ВМ, а это и означает, что точки К и М равноудалены от середины стороны АВ, что и требовалось доказать.
6. К двум окружностям проведены две общие внешние касательные и одна внутренняя. Внутренняя касательная пересекает внешние в точках А, В и касается окружностей в точках А1 и В1. Докажите, что АА1 = ВВ1.
Решение (рис. 10). Стоп… Да что тут решать? Это же просто другая формулировка предыдущей задачи. Очевидно, что одна из окружностей является вписанной, а другая вневписанной для некоего треугольника АВС. А отрезки АА1 и ВВ1 соответствуют отрезкам АК и ВМ задачи 5. Примечательно, что задача, предлагавшаяся на Всероссийской олимпиаде школьников по математике, решается столь очевидным образом.
7. Стороны пятиугольника в порядке обхода равны 5, 6, 10, 7, 8. Доказать, что в этот пятиугольник нельзя вписать окружность.
Решение (рис. 11). Предположим, что в пятиугольник АВСDE можно вписать окружность. Причём стороны AB, BC, CD, DE и ЕA равны соответственно 5, 6, 10, 7 и 8. Отметим последовательно точки касания – F, G, H, M и N. Пусть длина отрезка AF равна х.
Но, AF = AN. То есть 10 – х = х; х = 5. Однако, отрезок касательной AF не может равняться стороне АВ. Полученное противоречие и доказывает, что в данный пятиугольник нельзя вписать окружность.
8. В шестиугольник вписана окружность, его стороны в порядке обхода равны 1, 2, 3, 4, 5. Найти длину шестой стороны.
Решение. Конечно, можно отрезок касательной обозначить за х, как и в предыдущей задаче, составить уравнение и получить ответ. Но, гораздо эффективнее и эффектнее использовать примечание к теореме 2: суммы сторон описанного шестиугольника, взятых через одну, равны.
Тогда 1 + 3 + 5 = 2 + 4 + х, где х – неизвестная шестая сторона, х = 3.
9. МГУ, 2003 г. химический факультет, № 6(6). В пятиугольник АВСDE вписана окружность, Р – точка касания этой окружности со стороной ВС. Найдите длину отрезка ВР, если известно, что длины всех сторон пятиугольника есть целые числа, АВ = 1, СD = 3.
Решение (рис.12). Так как длины всех сторон являются целыми числами, то равны дробные части длин отрезков BT, BP, DM, DN, AK и AT. Имеем, АТ + ТВ = 1, и дробные части длин отрезков AT и TB равны. Это возможно только тогда, когда АТ + ТВ = 0,5. По теореме 1 ВТ + ВР.
Значит, ВР = 0,5. Заметим, что условие СD = 3 оказалось невостребованным. Очевидно, авторы задачи предполагали какое-то другое решение. Ответ: 0,5.
10. В четырёхугольнике ABCD AD = DC, AB = 3, BC = 5. Окружности, вписанные в треугольники ABD и CBD касаются отрезка BD в точках M и N соответственно. Найти длину отрезка MN.
Решение (рис. 13). MN = DN – DM. По формуле (1) для треугольников DBA и DBС соответственно, имеем:
11. В четырёхугольник ABCD можно вписать окружность. Окружности, вписанные в треугольники ABD и CBD имеют радиусы R и r соответственно. Найти расстояние между центрами этих окружностей.
Решение (рис. 13). Так как по условию четырёхугольник ABCD вписанный, по теореме 2 имеем: AB + DC = AD + BC. Воспользуемся идеей решения предыдущей задачи. . Это означает, что точки касания окружностей с отрезком DM совпадают. Расстояние между центрами окружностей равно сумме радиусов. Ответ: R + r.
Фактически доказано, что условие – в четырёхугольник ABCD можно вписать окружность, равносильно условию – в выпуклом четырехугольнике ABCD окружности, вписанные в треугольники ABC и ADC касаются друг друга. Верно обратное.
Доказать эти два взаимно-обратных утверждения предлагается в следующей задаче, которую можно считать обобщением данной.
12. В выпуклом четырехугольнике ABCD (рис. 14) окружности, вписанные в треугольники ABC и ADC касаются друг друга. Докажите, что окружности, вписанные в треугольники ABD и BDC также касаются друг друга.
13. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D так, что окружности, вписанные в треугольники АВD и ACD касаются отрезка AD в одной точке. Найти длину отрезка BD.
Решение (рис. 15). Применим формулу (1) для треугольников ADC и ADB, вычислив DM двумя
Оказывается, D – точка касания со стороной ВС окружности, вписанной в треугольник АВС. Верно обратное: если вершину треугольника соединить с точкой касания вписанной окружности на противоположной стороне, то окружности, вписанные в получившиеся треугольники, касаются друг друга.
14. Центры О1, О2 и О3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек О1, О2, О3 проведены касательные к данным окружностям так, как показано на рисунке.
Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
Решение (рис. 16). Важно понять, как использовать тот факт, что заданные окружности имеют одинаковые радиусы. Заметим, что отрезки ВR и DМ равны, что следует из равенства прямоугольных треугольников О1ВR и O2BM. Аналогично DL = DP, FN = FK. Почленно складываем равенства, затем вычитаем из полученных сумм одинаковые отрезки касательных, проведенных из вершин А, С, и Е шестиугольника ABCDEF: АR и AK, CL и CM, EN и EP. Получаем требуемое.
Вот пример задачи по стереометрии, предлагавшейся на XII Международном математическом турнире старшеклассников “Кубок памяти А. Н. Колмогорова”.
16. Дана пятиугольная пирамида SA1A2A3A4A5. Существует сфера w , которая касается всех ребер пирамиды и другая сфера w 1, которая касается всех сторон основания A1A2A3A4A5 и продолжений боковых рёбер SA1, SA2, SA3, SA4, SA5 за вершины основания. Докажите, что вершина пирамиды равноудалена от вершин основания. (Берлов С. Л., Карпов Д. В.)
Решение. Пересечение сферы w с плоскостью любой из граней сферы – это вписанная окружность грани. Пересечение сферы w 1 с каждой из граней SAiAi+1 – вневписанная окружность, касающаяся стороны AiAi+1 треугольника SAiAi+1 и продолжений двух других сторон. Обозначим точку касания w 1 с продолжением стороны SAi через Bi. По опорной задаче 1 имеем, что SBi = SBi+1 = pSAiAi+1 , следовательно, периметры всех боковых граней пирамиды равны. Обозначим точку касания w со стороной SAi через Сi. Тогда SC1 = SC2 = SC3 = SC4 = SC5= s,
так как отрезки касательных равны. Пусть CiAi = ai. Тогда pSAiAi+1 = s+ai+ai+1, и из равенства периметров следует, что a1 = a3 = a5 = a2 = a4, откуда SA1 = SA2 = SA3 = SA4 = SA5.
17. ЕГЭ. Диагностическая работа 8.12.2009 г, С–4. Дана трапеция ABCD, основания которой BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC, касается стороны CD в точке K. Найдите длину отрезка CK.
Найдем диагональ AC. Опустим из вершин B и C на сторону AD перпендикуляры BE и CF соответственно. AE = FD, так как трапеция равнобедренная. BCFE – прямоугольник.
Возможны две геометрические конфигурации.
Первый случай (рис. 18): окружность вписана в треугольник ACD.
По формуле (1)
Второй вариант (рис.19): окружность касается продолжений сторон AC и AD за точками C и D соответственно и отрезка CD.
По формуле (2)
18. ЕГЭ. 4.6. 2010 г. В треугольнике АВС АВ = 13, ВС = 11, СА = 9. Точка D лежит на прямой АС, причём АD : DС = 1 : 9. Окружности, вписанные в каждый из треугольников ВDС и ВDА, касаются стороны ВD в точках Е и F. Найдите длину отрезка EF.
Решение. Возможны два случая (рис. 20 и рис. 21). По формуле (1) найдём длины отрезков DE и DF.
В первом случае AD = 0,1АС, СD = 0,9AC. Во втором – AD = 0,125АС, СD = 1,125AC. Подставляем данные и получаем ответ: 4,6 или 5,5.
Задачи для самостоятельного решения/
1. Периметр равнобедренной трапеции, описанной около окружности равен 2р. Найдите проекцию диагонали трапеции на большее основание. (1/2р)
2. Открытый банк задач ЕГЭ по математике. В4. К окружности, вписанной в треугольник ABC (рис. 22), проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. (24)
3. В треугольник АВС вписана окружность. MN – касательная к окружности, M Î АС, N Î ВС, ВС = 13, АС = 14, АВ = 15. Найдите периметр треугольника MNC. (12)
4. К окружности, вписанной в квадрат со стороной а, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника. (а)
5. Окружность вписана в пятиугольник со сторонами а, d, c, d и e. Найдите отрезки, на которые точка касания делит сторону, равную а.
Ответ:
6. В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника. (16)
7. CD – медиана треугольника ABC. Окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD в точках M и N. Найдите MN, если АС – ВС = 2. (1)
8. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D. К окружностям, вписанным в треугольники АВD и ACD, проведена общая касательная, пересекающая AD в точке М. Найти длину отрезка АМ. (Длина АМ не зависит от положения точки D и
равна ½ (c + b – a))
9. В прямоугольный треугольник вписана окружность радиуса а. Радиус окружности, касающейся гипотенузы и продолжений катетов, равен R. Найдите длину гипотенузы. (R – a)
10. В треугольнике АВС известны длины сторон: АВ = с, АС = b, ВС = а. Вписанная в треугольник окружность касается стороны АВ в точке С1. Вневписанная окружность касается продолжения стороны АВ за точку А в точке С2. Определите длину отрезка С1С2. (b)
11. Найдите длины сторон треугольника, разделённых точкой касания вписанной окружности радиуса 3 см на отрезки 4 см и 3 см. (7, 24 и 25 см в прямоугольном треугольнике)
12. Соросовская олимпиада 1996 г, 2 тур, 11 класс. Дан треугольник АВС, на сторонах которого отмечены точки А1, В1, С1. Радиусы окружностей вписанных в треугольники АС1В1, ВС1А1, СА1В1 равны по r. Радиус окружности, вписанной в треугольник А1В1С1 равен R. Найти радиус окружности, вписанной в треугольник АВС. (R + r).
Задачи 4–8 взяты из задачника Гордина Р. К. “Геометрия. Планиметрия.” Москва. Издательство МЦНМО. 2004.
💡 Видео
#2str. Счет отрезковСкачать
✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис ТрушинСкачать
✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема МансионаСкачать
ВСЕ правила и формулы ПЛАНИМЕТРИИСкачать
4.3. Вписанные и описанные окружности. Вневписанные окружности.Скачать
✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать
Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать
Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.Скачать
Вневписанная окружностьСкачать
Отрезки касательных. Применение Чевы и Ван-Обеля. Точка Жергонна. (Геометрические конструкции)Скачать
Вневписанная окружность | Теоремы об окружностях - 3Скачать
Геометрия, Отрезки касательных ко вписанной окружности из вершин треугольникаСкачать
КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать
Геометрия. 8 класс. Урок 8 "Биссектриса как ГМТ. Вписанная и вневписанная окружности треугольника"Скачать