- Содержание
- Высота треугольника
- Пересечение высот в треугольнике
- Биссектриса
- Медиана
- Решим задачу!
- Серединные перпендикуляры к сторонам треугольника
- math4school.ru
- Треугольники
- Основные свойства
- Равенство треугольников
- Подобие треугольников
- Медианы треугольника
- Биссектрисы треугольника
- Высоты треугольника
- Серединные перпендикуляры
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Расположение центра описанной окружности
- Равнобедренный треугольник
- Равносторонний треугольник
- Прямоугольный треугольник
- Вневписанные окружности
- Теоремы синусов, косинусов, тангенсов; формулы Мольвейде
Содержание
Из вершин треугольника к противолежащим от вершин сторонам можно проводить различные отрезки, причем так, чтобы получать «интересные данные» внутри фигуры.
К примеру, отрезок из вершины можно опустить таким образом, что в итоге он «приземлится» ровно посередине противолежащей от вершины стороны. В геометрии существует три подобных отрезка, что задают для треугольника новые геометрические параметры — высота, биссектриса и медиана.
Видео:Биссектрисы треугольника.Скачать
Высота треугольника
Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$, образующий при этом перпендикуляр к стороне $AB$. Тогда отрезок $CD$ будет являться высотой треугольника $bigtriangleup$. Аналогичный перпендикуляр можно опустить как из вершины $A$, так и из вершины $B$.
Высота треугольника — перпендикуляр, проведенный из вершины к прямой, содержащей противолежащую сторону треугольника.
В остроугольном треугольнике — где углы имеют значение $ 90^,$ — провести высоту будет уже не так интуитивно просто.
Осмотрите треугольник $bigtriangleup$ выше, с тупым углом $angle$.
Нам необходимо провести высоту из вершины $K$ к стороне $PM$. Подумайте, как будет располагаться отрезок, выполните чертеж и сравните свои предположения со скрытым чертежом.
Пересечение высот в треугольнике
Выходит, что в остроугольном треугольнике высоты пересекаются в точке, расположенной строго внутри треугольника — никаких дополнительных построений не требуется.
В тупоугольном треугольнике высоты пересекаются в точке, расположенной вне треугольника, — чтобы эту точку получить, необходимо достраивать продолжение сторон. Так, в случае с нашим тупоугольным треугольником, высоты пересекаются в точке $O$ — внимание на чертеж выше.
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Биссектриса
Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$ таким образом, что $angle$ делится отрезком $CD$ на два равных друг другу угла. Тогда отрезок $CD$ будет называться биссектрисой треугольника $bigtriangleup$ (от лат. ‘bi’ — «два», ‘secare’ — «резать»).
По аналогии с высотами, такие же отрезки, делящее угол пополам, можно опустить как из вершины $A$, так и из вершины $B$.
Биссектриса треугольника — отрезок, соединяющий вершину с противолежащей стороной и делящий при этом угол данной вершины пополам.
В отличие от высоты, биссектриса — понятие, теснее связанное с углом, чем с треугольником, поэтому ряд ее свойств больше определяет геометрию углов, чем геометрию треугольников. Например, одно из таких замечательных свойств связано со смежными углами. Оказывается, что биссектрисы, проведенные из смежных углов, будут образовывать прямой угол. Давайте это докажем!
Теорема о биссектрисах смежных углов. Биссектрисы смежных углов взаимно перпендикулярны.
Доказательство. $angle$ является смежным с $angle$. $OB$ — биссектриса $angle;$ $OD$, соответственно, биссектриса $angle$. По свойству смежных углов известно, что сумма смежных углов равняется $180^$. То есть:
Согласно условию $angle=angle=frac<angle>$, $angle=angle=frac<angle>$. Тогда уравнение выше можно представить в следующем виде:
Разделим обе части уравнения на $2$ и получим: $angle+angle=90^.$ $angle+angle$ равняется $angle$. Теорема доказана .
Видео:ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать
Медиана
Наконец, проведем отрезок $CD$ в треугольнике $bigtriangleup$ из вершины $C$ к противолежащей стороне $AB$ таким образом, что сторона $AB$ поделится на два равных друг другу отрезка. Мы получили третий важный отрезок в треугольнике — медиану (от лат. ‘medianus’ — «средний»).
Медиана треугольника — отрезок, соединяющий вершину с серединой противолежащей стороны.
Обратили внимание?
Медианы, как и биссектрисы с высотами, пересекаются в одной точке внутри треугольника. Исключением является тупоугольный треугольник и его высоты: они пересекаются вне треугольника.
Доказать это, к сожалению, нам пока не по силам, ибо требуется знание нескольких важных теорем, которые мы обязательно изучим в курсе далее. Как только, так сразу. Пока — принять, понять, поверить.
Видео:Замечательные точки треуг-ка. 8 класс.Скачать
Решим задачу!
В $bigtriangleup$ проведена медиана $AD$ к стороне $BC$. Продолжение медианы проходит через точку $E$, расположенную вне треугольника так, что $AD=DE$. Докажите, что треугольники $bigtriangleup$ и $bigtriangleup$ равны.
Дано:
Найти:
Решение
Рассмотрим $bigtriangleup$ и $bigtriangleup$. В них углы $angle$ и $angle$ равны как вертикальные. По заданному условию $AD=DE$. Также имеем равенство сторон $CD=DB$ — по определению медианы: отрезка, делящего противолежащую от угла сторону на два равных отрезка.
Следовательно $bigtriangleup= bigtriangleup$ по первому признаку равенства треугольников: двум сторонам и углу, лежащему между ними.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Серединные перпендикуляры к сторонам треугольника
Свойство серединных перпендикуляров к сторонам треугольника
Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Д ано:
m, n, k — серединные перпендикуляры к сторонам AB, BC, AC
Доказать: m, n, k пересекаются в одной точке.
Сначала докажем, что серединные перпендикуляры к двум сторонам треугольника пересекаются в одной точке.
Предположим, что m и k не пересекаются. Тогда m ∥ k.
Но прямые AB и AC пересекаются в точке A. Пришли к противоречию. Следовательно, прямые m и k пересекаются.
Обозначим точку пересечения прямых m и k как O.
По свойству серединного перпендикуляра к отрезку AO=OC и AO=BO. Следовательно, и OC=BO. Значит, точка O равноудалена от концов отрезка BC, следовательно, лежит на серединном перпендикуляре n к этому отрезку. Таким образом, все три серединных перпендикуляра m, n, k к сторонам треугольника ABC пересекаются в одной точке O.
Что и требовалось доказать.
Точка пересечения серединных перпендикуляров к сторонам треугольника является центром описанной около этого треугольника окружности
Точка пересечения серединных перпендикуляров к сторонам треугольника — одна из четырех замечательных точек треугольника.
Видео:Точка пересечения высот треугольника.Скачать
math4school.ru
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Треугольники
Видео:8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать
Основные свойства
Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).
Углами (внутренними углами) треугольника называются три угла, каждый из которых образован тремя лучами, выходящими из вершин треугольника и проходящими через две другие вершины.
Внешним углом треугольника называется угол, смежный внутреннему углы треугольника.
Сумма углов треугольника равна 180°:
Внешний угол равен сумме двух внутренних углов, не смежных с ним, и больше любого внутреннего, с ним не смежного:
Длина каждой стороны треугольника больше разности и меньше суммы длин двух других сторон:
В треугольнике против большего угла лежит большая сторона, против большей стороны лежит больший угол:
Средней линией треугольника называется отрезок, который соединяет середины двух его сторон.
Средняя линия треугольника параллельна одной из его сторон и равна её половине:
Видео:Биссектриса треугольника. Построение. 2 частьСкачать
Равенство треугольников
Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны:
У равных треугольников все соответствующие элементы равны (стороны, углы, высоты, медианы, биссектрисы, средние линии и т.д.)
В равных треугольниках против равных сторон лежат равные углы, а против равных углов – равные стороны.
Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны:
Второй признак равенства треугольников.
Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны:
Третий признак равенства треугольников.
Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны:
Видео:8. Медиана треугольника и её свойства.Скачать
Подобие треугольников
Подобными называются треугольники, у которых соответствующие стороны пропорциональны.
Коэффициент пропорциональности называется коэффициентом подобия:
Два треугольника подобны, если:
- Два угла одного треугольника равны двум углам другого треугольника.
- Две стороны одного треугольника пропорциональны двум сторонам другого, и углы, образованные этими сторонами, равны.
- Стороны одного треугольника пропорциональны сторонам другого.
У подобных треугольников соответствующие углы равны, а соответствующие отрезки пропорциональны:
Отношение периметров подобных треугольников равно коэффициенту подобия.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Прямая, пересекающая две стороны треугольника, и параллельная третьей, отсекает треугольник, подобный данному:
Три средние линии треугольника делят его на четыре равных треугольника, подобные данному, с коэффициентом подобия ½:
Видео:Геометрия. Линии в треугольникеСкачать
Медианы треугольника
Медианой треугольника называется отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Три медианы треугольника пересекаются в одной точке, делящей медианы в отношении 2:1, считая от вершины:
- Медиана делит треугольник на два равновеликих (с равными площадями) треугольника.
- Три медианы треугольника делят его на шесть равновеликих треугольников:
Длины медиан, проведённых к соответствующим сторонам треугольника, равны:
Видео:Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать
Биссектрисы треугольника
Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне.
Биссектрисы внутренних углов треугольника пересекаются в одной точке, находящейся внутри треугольника, равноудалённой от трёх его сторон, которая является центром окружности, вписанной в данный треугольник.
Биссектриса внутреннего угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные двум другим сторонам:
Длина биссектрисы угла А :
Биссектрисы внутреннего и смежного с ним внешнего угла перпендикулярны.
Биссектриса внешнего угла треугольника делит (внешне) противолежащую сторону на отрезки, пропорциональные двум другим сторонам.
BL – биссектриса угла В ;
ВЕ – биссектриса внешнего угла СВК :
Видео:Точка пересечения биссектрисСкачать
Высоты треугольника
Высотой треугольника называется перпендикуляр, опущенный из любой вершины треугольника на противолежащую сторону или на продолжение стороны.
Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.
Высоты треугольника обратно пропорциональны его сторонам:
Длина высоты, проведённой к стороне а :
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Серединные перпендикуляры
Серединный перпендикуляр – это прямая, которая проходит через середину стороны треугольника перпендикулярно к ней.
Три серединных перпендикуляра треугольника пересекаются в одной точке, которая является центром окружности, описанной около данного треугольника.
Точка пересечения биссектрисы угла треугольника с серединным перпендикуляром противолежащей стороны лежит на окружности, описанной около данного треугольника.
Видео:Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать
Окружность, вписанная в треугольник
Окружность называется вписанной в треугольник, если она касается всех его сторон.
Точки касания вписанной окружности сторон треугольника отсекают от его сторон три пары равных между собой отрезков:
Радиус вписанной в треугольник окружности – расстояние от её центра до сторон треугольника:
Видео:Четыре замечательные точки треугольника. Видеоурок 20. Геометрия 8 классСкачать
Окружность, описанная около треугольника
Окружность называется описанной около треугольника, если она проходит через все его вершины.
Радиус описанной окружности:
Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
Расположение центра описанной окружности
Видео:ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА | ГЕОМЕТРИЯСкачать
Равнобедренный треугольник
Треугольник называется равнобедренным, если у него две стороны равны. Равные стороны называют боковыми сторонами, а третью – основанием равнобедренного треугольника.
В равнобедренном треугольнике углы при основании равны: ∠ A = ∠ C.
В равнобедренном треугольнике медиана, проведённая к основанию, является и биссектрисой, и высотой: BL – медиана, биссектриса, высота.
Основные формулы для равнобедренного треугольника:
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Равносторонний треугольник
Треугольник у которого все стороны равны называется равносторонним или правильным треугольником.
Центры вписанной и описанной окружностей правильного треугольника совпадают.
Все углы равностороннего треугольника равны:
Каждая медиана равностороннего треугольника совпадает с биссектрисой и высотой, которые проведены из той же вершины:
Основные соотношения для элементов равностороннего треугольника
Видео:Высоты треугольника.Скачать
Прямоугольный треугольник
Треугольник называется прямоугольным, если у него есть прямой угол.
Стороны, прилежащие к прямому углу, называются катетами, противолежащая прямому углу – гипотенузой.
Прямоугольные треугольники равны если у них равны:
- два катета;
- катет и гипотенуза;
- катет и прилежащий острый угол;
- катет и противолежащий острый угол;
- гипотенуза и острый угол.
- одному острому углу;
- из пропорциональности двух катетов;
- из пропорциональности катета и гипотенузы.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное между проекциями катетов на гипотенузу:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, может быть определена через катеты и их проекции на гипотенузу:
Медиана, проведённая из вершины прямого угла, равна половине гипотенузы:
Высота прямоугольного треугольника, проведённая из вершины прямого угла, делит данный треугольник на два треугольника, подобные данному:
Площадь прямоугольного треугольника можно определить
через катеты:
через катет и острый угол:
через гипотенузу и острый угол:
Центр описанной окружности совпадает с серединой гипотенузы.
Радиус описанной окружности:
Радиус вписанной окружности:
Вневписанные окружности
Три окружности, каждая из которых касается одной стороны (снаружи) и продолжений двух других сторон треугольника, называются вневписанными.
Центр вневписанной окружности лежит не пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.
Так точка О1 , центр одной из вневписанных окружностей Δ ABC , лежит на пересечении биссектрисы ∠ A треугольника ABC и биссектрис BО1 и C О1 внешних углов Δ ABC при вершинах B и C .
Таким образом, шесть биссектрис треугольника – три внутренние и три внешние – пересекаются по три в четырёх точках – центрах вписанной и трёх вневписанных окружностей.
Δ ABC является ортоцентричным в Δ О1О2О3 (точки A , B и C – основания высот в Δ О1О2О3 ).
В Δ ABC углы равны 180°–2 О1 , 180°–2 О2 , 180°–2 О3 .
Радиус окружности, описанной около Δ О1О2О3 , равен 2 R , где R – радиус окружности, описанной около Δ ABC .
Δ ABC имеет наименьший периметр среди всех треугольников, вписанных в Δ О1О2О3 .
Если ra , rb , rс – радиусы вневписанных окружностей в Δ ABC , то в Δ ABC верно:
для r –
для R –
для S –
для самих ra , rb , rс –
Теоремы синусов, косинусов, тангенсов; формулы Мольвейде
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:
- если c 2 > a 2 +b 2 , то угол γ – тупой ( cos γ
- если c 2 2 +b 2 , то угол γ – острый ( cos γ > 0 );
- если c 2 = a 2 +b 2 , то угол γ – прямой ( cos γ = 0 ).
Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов. Коэффициент пропорциональности равен диаметру описанной окружности:
Теорема тангенсов (формула Региомонтана):