Высота треугольника. Свойство высоты прямоугольного треугольника |
Расположение высот у треугольников различных типов |
Ортоцентр треугольника |
Расположение ортоцентров у треугольников различных типов |
Ортоцентрический треугольник |
Задача Фаньяно |
- Высота треугольника. Свойство высоты прямоугольного треугольника
- Расположение высот у треугольников различных типов
- Ортоцентр треугольника
- Расположение ортоцентров у треугольников различных типов
- Ортоцентрический треугольник
- Задача Фаньяно
- Определение и свойства высоты треугольника
- Определение высоты треугольника
- Высота в разных видах треугольников
- Свойства высоты треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойства высот треугольника
- свойства высоты в треугольнике
- 🎥 Видео
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Высота треугольника. Свойство высоты прямоугольного треугольника
Определение 1 . Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника. Основанием высоты называют основание этого перпендикуляра (рис.1).
На рисунке 1 изображена высота BD , проведённая из вершины B треугольника ABC . Точка D – основание высоты.
Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.
Утверждение . Длина высоты прямоугольного треугольника, опущенной на гипотенузу, является средним геометрическим между длинами отрезков, на которые основание высоты делит гипотенузу (рис.2).
Доказательство . Углы треугольников BCD и ACD (рис.2) удовлетворяют соотношениям
Таким образом, длина отрезка CD является средним геометрическим между длинами отрезков BD и AD , что и требовалось доказать.
Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Расположение высот у треугольников различных типов
Фигура | Рисунок | Описание |
Остроугольный треугольник | Все высоты остроугольного треугольника лежат внутри треугольника. | |
Прямоугольный треугольник | Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника | |
Тупоугольный треугольник | Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника | |
Остроугольный треугольник | ||
Все высоты остроугольного треугольника лежат внутри треугольника. | ||
Прямоугольный треугольник | ||
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника | ||
Тупоугольный треугольник | ||
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника |
Все высоты остроугольного треугольника лежат внутри треугольника.
Высоты прямоугольного треугольника, проведённые из вершин острых углов, совпадают с катетами треугольника. Высота, проведённая из вершины прямого угла, лежит внутри треугольника
Высоты тупоугольного треугольника, проведённые из вершин острых углов, лежат вне треугольника. Высота, проведённая из вершины тупого угла, лежит внутри треугольника
Видео:Свойства высот треугольникаСкачать
Ортоцентр треугольника
Теорема 1 . Высоты треугольника (или их продолжения) пересекаются в одной точке.
Доказательство . Рассмотрим произвольный треугольник ABC и проведём через каждую из его вершин прямую, параллельную противолежащей стороне (рис.3).
Обозначим точки пересечения этих прямых символами A1 , B1 и C1 , как показано на рисунке 3.
Следовательно, точка B является серединой стороны C1A1 .
Следовательно, точка A является серединой стороны C1B1 .
Следовательно, точка C является серединой стороны B1A1 .
и в силу теоремы о серединных перпендикулярах пересекаются в одной точке.
Теорема 1 доказана.
Определение 2 . Точку пересечения высот треугольника (или их продолжений) называют ортоцентром треугольника.
У треугольников различных типов ортоцентры располагаются по-разному, как показано в следующей таблице.
Видео:Свойства ортоцентра и свойства высот треугольникаСкачать
Расположение ортоцентров у треугольников различных типов
Фигура | Рисунок | Описание |
Остроугольный треугольник | ||
Прямоугольный треугольник |