Все формулы медианы треугольника

Медиана треугольника

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Все формулы медианы треугольника

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

Все формулы медианы треугольника

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

Все формулы медианы треугольника

Все формулы медианы треугольника

Поскольку отрезок BD является медианой, то

Все формулы медианы треугольника

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

Все формулы медианы треугольника

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Все формулы медианы треугольника

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Все формулы медианы треугольника

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

Все формулы медианы треугольника

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

Все формулы медианы треугольника

Все формулы медианы треугольника

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

Все формулы медианы треугольника

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Все формулы медианы треугольника

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна Все формулы медианы треугольникаплощади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Содержание
  1. Все формулы медианы треугольника
  2. Треугольник. Формулы и свойства треугольников.
  3. Типы треугольников
  4. По величине углов
  5. По числу равных сторон
  6. Вершины углы и стороны треугольника
  7. Свойства углов и сторон треугольника
  8. Теорема синусов
  9. Теорема косинусов
  10. Теорема о проекциях
  11. Формулы для вычисления длин сторон треугольника
  12. Медианы треугольника
  13. Свойства медиан треугольника:
  14. Формулы медиан треугольника
  15. Биссектрисы треугольника
  16. Свойства биссектрис треугольника:
  17. Формулы биссектрис треугольника
  18. Высоты треугольника
  19. Свойства высот треугольника
  20. Формулы высот треугольника
  21. Окружность вписанная в треугольник
  22. Свойства окружности вписанной в треугольник
  23. Формулы радиуса окружности вписанной в треугольник
  24. Окружность описанная вокруг треугольника
  25. Свойства окружности описанной вокруг треугольника
  26. Формулы радиуса окружности описанной вокруг треугольника
  27. Связь между вписанной и описанной окружностями треугольника
  28. Средняя линия треугольника
  29. Свойства средней линии треугольника
  30. Периметр треугольника
  31. Формулы площади треугольника
  32. Формула Герона
  33. Равенство треугольников
  34. Признаки равенства треугольников
  35. Первый признак равенства треугольников — по двум сторонам и углу между ними
  36. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  37. Третий признак равенства треугольников — по трем сторонам
  38. Подобие треугольников
  39. Признаки подобия треугольников
  40. Первый признак подобия треугольников
  41. Второй признак подобия треугольников
  42. Третий признак подобия треугольников
  43. 📸 Видео

Видео:Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать

Как найти длину биссектрисы, медианы и высоты?  | Ботай со мной #031 | Борис Трушин

Все формулы медианы треугольника

Медиана — отрезок |AO|, который выходит из вершины A и делит противолежащею сторону c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Все формулы медианы треугольника

M — медиана, отрезок |AO|

c — сторона на которую ложится медиана

a, b — стороны треугольника

γ — угол CAB

Формула длины медианы через три стороны, ( M ):

Все формулы медианы треугольника

Формула длины медианы через две стороны и угол между ними, ( M ):

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Треугольник. Формулы и свойства треугольников.

Видео:Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

Типы треугольников

По величине углов

Все формулы медианы треугольника

Все формулы медианы треугольника

Все формулы медианы треугольника

По числу равных сторон

Все формулы медианы треугольника

Все формулы медианы треугольника

Все формулы медианы треугольника

Видео:Формула медианы треугольникаСкачать

Формула медианы треугольника

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Все формулы медианы треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Формула нахождения медианы треугольника по известным сторонам треугольника.Скачать

Формула нахождения медианы треугольника по известным сторонам треугольника.

Медианы треугольника

Все формулы медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Биссектрисы треугольника

Все формулы медианы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Длина медианы. Вывод формулыСкачать

Длина медианы.  Вывод формулы

Высоты треугольника

Все формулы медианы треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Теорема Стюарта | формулы для биссектрисы треугольника и медианыСкачать

Теорема Стюарта | формулы для биссектрисы треугольника и медианы

Окружность вписанная в треугольник

Все формулы медианы треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:длина медианы #SHORTSСкачать

длина медианы #SHORTS

Окружность описанная вокруг треугольника

Все формулы медианы треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Подготовка к зачету по геометрии 9 класс. Формула медианы треугольникаСкачать

Подготовка к зачету по геометрии 9 класс. Формула медианы треугольника

Связь между вписанной и описанной окружностями треугольника

Видео:Все свойства медианы в одной задаче.Скачать

Все свойства медианы в одной задаче.

Средняя линия треугольника

Свойства средней линии треугольника

Все формулы медианы треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Периметр треугольника

Все формулы медианы треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:01. Формула медианы (часть 04)Скачать

01. Формула медианы (часть 04)

Формулы площади треугольника

Все формулы медианы треугольника

Формула Герона

S =a · b · с
4R

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Подобие треугольников

Все формулы медианы треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

📸 Видео

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Все факты о медиане треугольника для ЕГЭСкачать

Все факты о медиане треугольника для ЕГЭ

01. Формула медианы (часть 01)Скачать

01. Формула медианы (часть 01)

01. Формула медианы (часть 03)Скачать

01. Формула медианы (часть 03)

Геометрия, 9 класс | Метод удвоения медиан.Скачать

Геометрия, 9 класс | Метод удвоения медиан.
Поделиться или сохранить к себе: