Все формулы для окружности геометрия

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Все формулы для окружности геометрия

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТ

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Все формулы для окружности геометрия

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnlineСкачать

Хитрости в решении геометрических задач в ОГЭ по математике | Математика TutorOnline

Площадь круга и его частей. Длина окружности и ее дуг

Все формулы для окружности геометрияОсновные определения и свойства. Число π
Все формулы для окружности геометрияФормулы для площади круга и его частей
Все формулы для окружности геометрияФормулы для длины окружности и ее дуг
Все формулы для окружности геометрияПлощадь круга
Все формулы для окружности геометрияДлина окружности
Все формулы для окружности геометрияДлина дуги
Все формулы для окружности геометрияПлощадь сектора
Все формулы для окружности геометрияПлощадь сегмента

Все формулы для окружности геометрия

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

ФигураРисунокОпределения и свойства
ОкружностьВсе формулы для окружности геометрия
ДугаВсе формулы для окружности геометрия
КругВсе формулы для окружности геометрия
СекторВсе формулы для окружности геометрия
СегментВсе формулы для окружности геометрия
Правильный многоугольникВсе формулы для окружности геометрия
Все формулы для окружности геометрия
Окружность
Все формулы для окружности геометрия

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

ДугаВсе формулы для окружности геометрия

Часть окружности, расположенная между двумя точками окружности

КругВсе формулы для окружности геометрия

Конечная часть плоскости, ограниченная окружностью

СекторВсе формулы для окружности геометрия

Часть круга, ограниченная двумя радиусами

СегментВсе формулы для окружности геометрия

Часть круга, ограниченная хордой

Правильный многоугольникВсе формулы для окружности геометрия

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Все формулы для окружности геометрия

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Все формулы для окружности геометрия

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Формулы для площади круга и его частей

Все формулы для окружности геометрия,

где R – радиус круга, D – диаметр круга

Все формулы для окружности геометрия,

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Все формулы для окружности геометрия,

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Площадь кругаВсе формулы для окружности геометрия
Площадь сектораВсе формулы для окружности геометрия
Площадь сегментаВсе формулы для окружности геометрия
Площадь круга
Все формулы для окружности геометрия

Все формулы для окружности геометрия,

где R – радиус круга, D – диаметр круга

Площадь сектораВсе формулы для окружности геометрия

Все формулы для окружности геометрия,

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Площадь сегментаВсе формулы для окружности геометрия

Все формулы для окружности геометрия,

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Длина окружностиВсе формулы для окружности геометрия
Длина дугиВсе формулы для окружности геометрия
Длина окружности
Все формулы для окружности геометрия

где R – радиус круга, D – диаметр круга

Длина дугиВсе формулы для окружности геометрия

если величина угла α выражена в радианах

Все формулы для окружности геометрия,

если величина угла α выражена в градусах

Видео:ВСЯ ГЕОМЕТРИЯ 9 класса в одной задаче | Математика | TutorOnlineСкачать

ВСЯ ГЕОМЕТРИЯ 9 класса в одной задаче | Математика | TutorOnline

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Длина окружности

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

Все формулы для окружности геометрия

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы для окружности геометрия

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы для окружности геометрия

из которой вытекает равенство:

Все формулы для окружности геометрия

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы для окружности геометрия

из которой вытекает равенство:

Все формулы для окружности геометрия

Видео:Формулы приведения с нуля за 15 минут!Скачать

Формулы приведения с нуля за 15 минут!

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

Все формулы для окружности геометрия

В случае, когда величина α выражена в градусах, справедлива пропорция

Все формулы для окружности геометрия

из которой вытекает равенство:

Все формулы для окружности геометрия

В случае, когда величина α выражена в радианах, справедлива пропорция

Все формулы для окружности геометрия

из которой вытекает равенство:

Все формулы для окружности геометрия

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Все формулы для окружности геометрия

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

Все формулы для окружности геометрия

Все формулы для окружности геометрия

Все формулы для окружности геометрия

В случае, когда величина α выражена в в радианах, получаем

Видео:Основные свойства окружности. Формулы связанные с окружностьюСкачать

Основные свойства окружности. Формулы связанные с окружностью

Что такое окружность: определение, свойства, формулы

В данной публикации мы рассмотрим определение и свойства одного из основных геометрических объектов – окружности. Также приведем формулы, с помощью которых можно найти ее радиус, диаметр и длину.

Видео:Как находить площадь любой фигуры? Геометрия | МатематикаСкачать

Как находить площадь любой фигуры? Геометрия | Математика

Определение окружности

Окружность – это замкнутая кривая на плоскости, состоящая из точек, равноудаленных от определенной точки. Данная точка называется центром окружности.

Все формулы для окружности геометрия

Радиус окружности (R) – это отрезок, соединяющий любую точку, лежащую на окружности, с ее центром.

Диаметр окружности (d) – это линия (хорда), проходящая через центр окружности и соединяющая две противоположные точки, лежащие на ней.

Все формулы для окружности геометрия

Примечание: Не стоит путать окружность с кругом, т.к. круг – это множество точек плоскости, ограниченных окружностью (т.е. лежащих внутри окружности).

Видео:ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать

ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия Атанасян

Свойства окружности

Свойство 1

Через три точки на плоскости, не лежащие на одной прямой, можно провести окружность, причем только одну.

Свойство 2

Точка касания двух окружностей (C) лежит на одной прямой (AB), которая проходит через их центры.

Все формулы для окружности геометрия

Свойство 3

Изопериметрическое неравенство: Из всех замкнутых кривых одинаковой длины окружность ограничивает область с самой большой площадью.

Формулы

1. Диаметр окружности (d):

Поделиться или сохранить к себе: