Смешанное сопряжение двух окружностей r30

СОПРЯЖЕНИЕ ДВУХ ОКРУЖНОСТЕЙ

Возможны два варианта построений сопряжений двух окружностей:

· Задан радиус сопряжения.

· Задана точка сопряжения на одной из окружностей.

Сопряжение может быть внешним, внутренним и смешанным.

1. Сопряжение двух окружностей дугой заданного радиуса R (Рисунок16)

Смешанное сопряжение двух окружностей r30

При внешнем сопряжении (рисунок 16) центр сопряжения О определяется пересечением двух геометрических мест – вспомогательных окружностей радиусов R1 + R и R2 + R, проведенных соответственно из центров сопрягаемых дуг, то есть из точек О1 и О2. Точки сопряжения А и В определяются как точки пересечения заданных дуг с прямыми ОО1 и ОО2.

Смешанное сопряжение двух окружностей r30

При внутреннем сопряжении (рисунок 17) центр сопряжения О определяется пересечением двух геометрических мест – вспомогательных окружностей радиусов R – R1 и R – R2, проведенных соответственно из О1 и О2 (рисунок 17).

Смешанное сопряжение двух окружностей r30

При смешанном сопряжении (рисунок 18) центр сопряжения О определяется в пересечении вспомогательных окружностей радиусов R — R1 и R + R2, проведенных соответственно из О1 и О2. Точки сопряжения А и В лежат на пересечении линий центров ОО1 и ОО2 с дугами заданных окружностей.

2. Сопряжение двух окружностей, если задано точка сопряжения А на одной из окружностей (рисунок 19).

Соединяют точку А с центром О1 и откладывают на этой прямой отрезок АС, равный R2. К середине отрезка СО2 восставляют перпендикуляр до пересечения с продолжением линии О1А. Точка О пересечения и является центром сопряжения. Вторая точка сопряжения В лежит на пересечении линии центров ОО2 с дугой второй окружности.

Смешанное сопряжение двух окружностей r30

Рисунок 19

ПОСТРОЕНИЕ КАСАТЕЛЬНЫХ

Построение касательных к окружности основано на том, что касательная перпендикулярна к радиусу, проведенному в точку касания.

1. Касательная к окружности из точки А, лежащей вне окружности (рисунок 20).

Смешанное сопряжение двух окружностей r30

Отрезок ОА, соединяющий данную точку с центром окружности, делят пополам и из полученной О1, как из центра описывают вспомогательную окружность радиусом R = О1А. Вспомогательная окружность пересекает заданную в точке С. Прямая АС является касательной к окружности, так как угол АСО прямой, как вписанный в окружность и опирающийся на ее диаметр.

2. Касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон от касательных.

2.1 Внешняя касательная к окружностям радиусов R1 и R2 (рисунок 21).

Смешанное сопряжение двух окружностей r30

Из центра О1 большей окружности проводят вспомогательную окружность радиусом R1 – R2. Отрезок О1О2 делят пополам и проводят вспомогательную окружность радиусом R = О3О1. Точки пересечения этих окружностей соединяют с центром О1 и продолжают до пересечения с окружностью радиуса R1 в точках В и D. Эти точки являются точками касания окружности большего диаметра. Из центра О2 проводят прямые О2А и О2С, соответственно параллельные О1В и ОD, до пересечения с контуром окружности в точках А и С. Прямые АВ и СD – искомые внешние касательные к двум окружностям.

2.2 Внутренняя касательная к двум окружностям радиусов R1 и R2 (рисунок 22).

Смешанное сопряжение двух окружностей r30

Рисунок 22

Из центра окружности О1 проводят вспомогательную окружность радиусом R1 + R2. Делят отрезок О1О2 пополам, и из полученной точки О3 проводят вторую вспомогательную окружность радиусом R = О3О1. Точки пересечения этих окружностей соединяют с центром О1 и на пересечении с окружностью радиуса R1 получают точки касания А и С. Из точки О2 проводят прямую, параллельную прямой О1А, и получают точку касания В на малой окружности. Аналогично построена точка касания D. Прямые АВ и СD – искомые внутренние касательные к двум окружностям.

Видео:Смешанное сопряжение двух окружностейСкачать

Смешанное сопряжение двух окружностей

Сопряжения

В этой небольшой статье, будут рассмотрены основные виды сопряжений и Вы узнаете о том, как построить сопряжение углов, прямых линий, окружностей и дуг, окружностей с прямой.

Сопряжением называют плавный переход одной линии в другую. Для того чтобы построить сопряжение, нужно найти центр сопряжения и точки сопряжений.

Точка сопряжения – это общая точка для сопрягаемых линий. Точку сопряжения также называют точкой перехода.

Ниже будут рассмотрены основные типы сопряжений.

Видео:Смешанное сопряжение двух дуг окружностей третьей дугой. Урок15.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Смешанное сопряжение двух дуг окружностей третьей дугой. Урок15.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение углов (Сопряжение пересекающихся прямых)

Сопряжение прямого угла(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Смешанное сопряжение двух окружностей r30

Сопряжение острого угла(Сопряжение пересекающихся прямых под острым углом)

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение
острого угла
. Для построения сопряжения острого угла раствором циркуля,равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a
и b. Сопряжение острого угла построено.

Смешанное сопряжение двух окружностей r30

Сопряжение тупого угла(Сопряжение пересекающихся прямых под тупым углом)

Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.

Смешанное сопряжение двух окружностей r30

Видео:Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.Скачать

Черчение. Внутреннее, внешнее и смешенное сопряжение двух окружностей.

Сопряжение параллельных прямых линий

Построим сопряжение двух параллельных прямых. Нам задана точка сопряжения a, лежащая на одной прямой. Из точки a проведём перпендикуляр до пересечения его с другой прямой в точке b. Точки a и b являются точками сопряжения прямых линий. Проведя из каждой точки дугу, радиусом больш отрезка ab, найдём центр сопряжения — точку О. Из центра сопряжения проведём дугу заданного радиуса сопряжения R.

Смешанное сопряжение двух окружностей r30

Видео:Построение ВНЕШНЕГО СОПРЯЖЕНИЯСкачать

Построение ВНЕШНЕГО СОПРЯЖЕНИЯ

Сопряжение окружностей(дуг) с прямой линией

Внешнее сопряжение дуги и прямой линии

В этом примере будет построено сопряжение заданным радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиусом R.

Сначала найдём центр сопряжения. Для этого проведём прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса сопряжения r, и дугу, из центра окружности O R радиусом R+r. Точка пересечения дуги и прямой и будет центром сопряжения – точкой О r .

Из центра сопряжения, точки О r , опустим перпендикуляр на прямую AB. Точка D, полученная на пересечении перпендикуляра и отрезка AB, и будет точкой сопряжения. Найдём вторую точку сопряжения на дуге окружности. Для этого соединим центр окружности О R и центр сопряжения О r линией. Получим вторую точку сопряжения – точку C. Из центра сопряжения проведём дугу сопряжения радиусом r, соединив точки сопряжения.

Смешанное сопряжение двух окружностей r30

Внутреннее сопряжение прямой линии с дугой

По аналогии строится внутреннее сопряжение прямой линии с дугой. Рассмотрим пример построения сопряжения радиусом r прямой линии, заданной отрезком AB, и дуги окружности радиуса R. Найдём центр сопряжения. Для этого построим прямую, параллельную отрезку AB и отстоящую от него на расстояние радиуса r, и дугу, из центра окружности O R радиусом R-r. Точка О r , полученная на пересечении прямой и дуги, и будет центром сопряжения.

Из центра сопряжения(точка О r ) опустим перпендикуляр на прямую AB. Точка D, полученная на основании перпендикуляра, и будет точкой сопряжения.

Для нахождения второй точки сопряжения на дуге окружности, соединим центр сопряжения Оr и центр окружности О R прямой линией. На пересечении линии с дугой окружности получим вторую точку сопряжения – точку C. Из точки О r , центра сопряжения, проведём дугу радиусом r, соединив точки сопряжения.

Смешанное сопряжение двух окружностей r30

Видео:Внешнее сопряжение двух окружностейСкачать

Внешнее сопряжение двух окружностей

Сопряжение окружностей (дуг)

Внешнее сопряжение дуг окружностей

Внешним сопряжением считается сопряжение, при котором центры сопрягаемых окружностей(дуг) O1( радиус R1) и O2 (радиус R2) располагаются за сопрягающей дугой радиуса R. На примере рассмотрено внешнее сопряжение дуг. Сначала находим центр сопряжения. Центром сопряжения является точка пересечения дуг окружностей с радиусами R+R1 и R+R2, построенных из центров окружностей O1(R1) и O2(R2) соответственно. Затем центры окружностей O1 и O2 соединяем прямыми с центром сопряжения, точкой O, и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. После этого, из центра сопряжения строим дугу заданного радиуса сопряжения R и соединяем ей точки A и B.

Смешанное сопряжение двух окружностей r30

Внутреннее сопряжение дуг окружностей

Внутренним сопряжением называется сопряжение, при котором центры сопрягаемых дуг O1, радиуса R1, и O2, радиус R2, располагаются внутри сопрягающей их дуги заданного радиуса R. На картинке ниже приведён пример построения внутреннего сопряжения окружностей(дуг). Вначале мы находим центр сопряжения, которым является точка O, точка пересечения дуг окружностей с радиусами R-R1 и R-R2 проведённых из центров окружностей O1и O2 соответственно. После чего соединяем центры окружностей O1 и O2 прямыми линиями с центром сопряжения и на пересечении линий с окружностями O1 и O2 получаем точки сопряжения A и B. Затем из центра сопряжения строим дугу сопряжения радиуса R и строим сопряжение.

Смешанное сопряжение двух окружностей r30

Смешанное сопряжение дуг окружностей

Смешанным сопряжением дуг является сопряжение, при котором центр одной из сопрягаемых дуг (O1) лежит за пределами сопрягающей их дуги радиуса R, а центр другой окружности(O2) – внутри её. На иллюстрации ниже приведён пример смешанного сопряжения окружностей. Сначала находим центр сопряжения, точку O. Для нахождения центра сопряжения строим дуги окружностей с радиусами R+R1, из центра окружности радиуса R1 точки O1, и R-R2, из центра окружности радиуса R2 точки O2. После чего соединяем центр сопряжения точку O с центрами окружностей O1 и O2 прямыми и на пересечении с линиями соответствующих окружностей получаем точки сопряжения A и B. Затем строим сопряжение.

Видео:Сопряжение окружностейСкачать

Сопряжение окружностей

Сопряжения в инженерной графике на чертежах с примерами

Содержание:

В очертаниях технических форм часто встречаются плавные переходы от од- ной линии к другой. Плавный переход одной линии в другую, выполненный при помощи промежуточной линии, называется сопряжением. Построение сопряжений основано на следующих положениях геометрии.

  1. Переход окружности в прямую будет плавным только тогда, когда заданная прямая является касательной к окружности (рис. 11а). Радиус окружности, проведенный в точку касания К, перпендикулярен к касательной прямой.
  2. Переход от одной окружности к другой в точке К только тогда будет плавным, когда окружности имеют в данной точке общую касательную (рис. 11б).

Смешанное сопряжение двух окружностей r30

Точка касания К и центры окружностей Смешанное сопряжение двух окружностей r30

  • Центром сопряжения О называется точка, равноудаленная от сопрягаемых линий (рис. 12).
  • Точкой сопряжения А (В) называется точка касания двух сопрягаемых линий (рис. 12).
  • Дуга сопряжения АВ – это дуга окружности, с помощью которой выполняется сопряжение (рис. 12).
  • Радиус сопряжения R – это радиус дуги сопряжения (рис. 12).

Для выполнения сопряжений необходимо определить три элемента построения: 1) радиус сопряжения; 2) центр сопряжения; 3) точки сопряжения.

Видео:Построение СМЕШАННОГО СОПРЯЖЕНИЯСкачать

Построение СМЕШАННОГО СОПРЯЖЕНИЯ

Сопряжение двух пересекающихся прямых линий

Пусть даны две пересекающиеся прямые m, n и радиус сопряжения R (рис. 12). Необходимо построить сопряжение данных прямых дугой окружности радиусом R.

Смешанное сопряжение двух окружностей r30

Выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от прямой n на расстояние радиуса R сопряжения. Таким множеством является прямая Смешанное сопряжение двух окружностей r30параллельная данной прямой n и отстоящая от неё на расстояние R.
  2. Построим множество точек центров сопряжения, удаленных от прямой m на расстояние радиуса сопряжения. Таким множеством является прямая Смешанное сопряжение двух окружностей r30параллельная m и отстоящая от последней на расстояние R.
  3. В пересечении построенных прямых Смешанное сопряжение двух окружностей r30найдем центр сопряжения О.
  4. Определим точку А сопряжения на прямой n. Для этого опустим из центра О перпендикуляр на прямую n . Для определения точки сопряжения В на прямой m необходимо опустить соответственно перпендикуляр из центра О на прямую m.

Проведем дугу сопряжения AB. Теперь будут определены все элементы сопряжения: радиус, центр и точки сопряжения.

Видео:1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Сопряжения прямой с окружностью

Сопряжение прямой с окружностью может быть внешним или внутренним. Рассмотрим построение внешнего сопряжения прямой с окружностью.

Пример 1. Пусть задана окружность радиусом R с центром в точке Смешанное сопряжение двух окружностей r30и прямая m. Требуется построить сопряжение окружности с прямой дугой окружности заданного радиуса R (рис. 13).

Для решения задачи выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от сопрягаемой прямой на расстояние R. Это множество задает прямая Смешанное сопряжение двух окружностей r30параллельная m и отстоящая от неё на расстояние R.
  2. Множество точек центров сопряжения, удаленных от окружности n на рас- стояние R, есть окружность Смешанное сопряжение двух окружностей r30проведенная радиусом Смешанное сопряжение двух окружностей r30
  3. Центр сопряжения О находим как точку пересечения линий Смешанное сопряжение двух окружностей r30
  4. Точку сопряжения А находим как основание перпендикуляра, проведенного из точки О на прямую m. Чтобы построить точку сопряжения В, необходимо про- вести линию центров Смешанное сопряжение двух окружностей r30т.е. соединить центры сопряженных дуг. В пересечении линии центров с заданной окружностью определим точку В.
  5. Проведем дугу сопряжения АВ.

Смешанное сопряжение двух окружностей r30Смешанное сопряжение двух окружностей r30

Пример 2. При построении внутреннего сопряжения (рис. 14) последовательность построений остается та же, что и в примере 1. Однако центр сопряжения определяется с помощью вспомогательной дуги окружности, проведенной из центра Смешанное сопряжение двух окружностей r30, радиусом Смешанное сопряжение двух окружностей r30

Видео:Внутреннее сопряжение двух окружностейСкачать

Внутреннее сопряжение двух окружностей

Сопряжение двух окружностей

Сопряжение двух окружностей может быть внешним, внутренним и смешанным. Пусть задан радиус сопряжения R, а центры сопряжения и точки сопряжения следует найти.

Пример 1. Построим сопряжение с внешним касанием двух данных окружностей m и n с радиусами Смешанное сопряжение двух окружностей r30дугой заданного радиуса R (рис. 15а).

  1. Для нахождения центра сопряжения О проведем окружность Смешанное сопряжение двух окружностей r30удаленную от данной окружности m на расстояние R . Так как сопряжение с внешним касанием, то радиус окружности Смешанное сопряжение двух окружностей r30равен Смешанное сопряжение двух окружностей r30
  2. Радиусом Смешанное сопряжение двух окружностей r30проведем окружность Смешанное сопряжение двух окружностей r30, удаленную от данной окружности n на расстояние R.
  3. Найдем центр сопряжения О как точку пересечения окружностей Смешанное сопряжение двух окружностей r30.
  4. Найдем точку сопряжения А как пересечение линии центров Смешанное сопряжение двух окружностей r30с дугой m.
  5. Аналогично найдем точку В как пересечение линии центров Смешанное сопряжение двух окружностей r30с дугой n .
  6. Проведем дугу сопряжения АВ.

Смешанное сопряжение двух окружностей r30

Пример 2. Построим сопряжение с внутренним касанием двух данных окружностей m и n с радиусами Смешанное сопряжение двух окружностей r30дугой радиусом R (рис. 15б).

  1. Для нахождения центра сопряжения О проведем окружность Смешанное сопряжение двух окружностей r30на расстоянии Смешанное сопряжение двух окружностей r30от данной окружности m.
  2. Проведем окружность Смешанное сопряжение двух окружностей r30на расстоянии Смешанное сопряжение двух окружностей r30от данной окружности n.
  3. Центр сопряжения О найдем как точку пересечения окружностей Смешанное сопряжение двух окружностей r30
  4. Точку сопряжения А найдем как точку пересечения линии центров Смешанное сопряжение двух окружностей r30с заданной окружностью m.
  5. Точку сопряжения В найдем как точку пересечения линии центров Смешанное сопряжение двух окружностей r30c заданной окружностью n.
  6. Проведем дугу сопряжения AВ с центром в точке O.

Пример 3. На рис. 16 приведен пример построения сопряжения с внешне- внутренним касанием.

Смешанное сопряжение двух окружностей r30

Видео:Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Построение касательных

Пример 1. Дана окружность с центром в точке Смешанное сопряжение двух окружностей r30и точка Смешанное сопряжение двух окружностей r30вне её. Через данную точку Смешанное сопряжение двух окружностей r30провести касательную к данной окружности (рис. 17).

Смешанное сопряжение двух окружностей r30

Для решения задачи выполним следующие построения.

  1. Соединим точку Смешанное сопряжение двух окружностей r30с центром окружности Смешанное сопряжение двух окружностей r30
  2. Находим середину С отрезка Смешанное сопряжение двух окружностей r30
  3. Из точки С, как из центра, проведем вспомогательную окружность радиусом Смешанное сопряжение двух окружностей r30
  4. В точке пересечения вспомогательной окружности с заданной получим точку касания А. Соединим точку Смешанное сопряжение двух окружностей r30с точкой А.

Пример 2. Построим общую касательную АВ к двум заданным окружностям радиусов Смешанное сопряжение двух окружностей r30(рис. 18).

Смешанное сопряжение двух окружностей r30

  1. Находим середину С отрезка Смешанное сопряжение двух окружностей r30
  2. Из точки С, как из центра, радиусом Смешанное сопряжение двух окружностей r30проведем вспомогательную окружность.
  3. Из центра большей окружности Смешанное сопряжение двух окружностей r30проведем вторую вспомогательную окружность радиусом Смешанное сопряжение двух окружностей r30
  4. Пересечение двух вспомогательных окружностей определяет точку К, через которую проходит радиус Смешанное сопряжение двух окружностей r30идущий в точку касания В. 5. Для построения второй точки касания А проведем Смешанное сопряжение двух окружностей r30
  5. Соединим точки А и В отрезком прямой линии.
Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Нанесение размеров на чертежах
  • Резьба на чертеже
  • Соединения разъемные и неразъемные в инженерной графике
  • Виды конструкторских документов
  • Виды в инженерной графике
  • Разрезы в инженерной графике
  • Сечения в инженерной графике
  • Выносные элементы в инженерной графике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📺 Видео

Сопряжение двух окружностейСкачать

Сопряжение двух окружностей

Сопряжение двух окружностей.Скачать

Сопряжение двух окружностей.

8 кл. Сопряжения двух окружностей.Скачать

8 кл. Сопряжения двух окружностей.

Сопряжения. Часть 3Скачать

Сопряжения. Часть 3

Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внешнее сопряжение двух дуг окружностей третьей дугой. Урок13.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

Сопряжение двух окружностей по касательной прямойСкачать

Сопряжение двух окружностей по касательной прямой

Сопряжение окружностей #черчение #сопряжениеСкачать

Сопряжение окружностей #черчение #сопряжение

НАЧЕРТИТЬ ЗАСОВ. ГЕОМЕТРИЧЕСКОЕ ЧЕРЧЕНИЕ. ИНЖЕНЕРНАЯ ГРАФИКА. ПЕРЕХОДЫ И СОПРЯЖЕНИЯСкачать

НАЧЕРТИТЬ ЗАСОВ. ГЕОМЕТРИЧЕСКОЕ ЧЕРЧЕНИЕ. ИНЖЕНЕРНАЯ ГРАФИКА. ПЕРЕХОДЫ И СОПРЯЖЕНИЯ

Внутреннее сопряжение двух дуг окружностей третьей дугой. Урок14.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Внутреннее сопряжение двух дуг окружностей третьей дугой. Урок14.(Часть1.ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)

ВСЯ СУТЬ СОПРЯЖЕНИЙ И ПЕРЕХОДОВ. Правило построения сопряжений. Геометрические построенияСкачать

ВСЯ СУТЬ СОПРЯЖЕНИЙ И ПЕРЕХОДОВ. Правило построения сопряжений. Геометрические построения
Поделиться или сохранить к себе: