Все диаметры окружности равны между собой если в параллелограмме

Задание №20 ОГЭ по математике

Видео:Все диаметры окружности равны между собой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Все диаметры окружности равны между собой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Анализ геометрических высказываний

В 20 задании из приведенных утверждений необходимо выбрать одно или несколько правильных. Утверждения из общего теоретического курса геометрии, поэтому, какие-то определенные рекомендации здесь дать нельзя, кроме как полного повторения теоретического курса. Другое дело, что если вы точно не знаете какое-либо утверждение, то решить задачу можно наоборот — выбирая и отсеивая неправильные. Это задание не имеет какого либо подхода к решению, однако ниже я привел несколько разобранных задач.

Разбор типовых вариантов задания №20 ОГЭ по математике

Первый вариант задания

Какие из следующих утверждений верны?

  1. Все диаметры окружности равны между собой.
  2. Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу.
  3. Любые два равносторонних треугольника подобны.
Решение:

Все диаметры окружности всегда равны между собой — это даже интуитивно понятно. Что касается второго утверждения, то оно неверно — вписанный угол всегда в два раза меньше центрального. А вот третье утверждение тоже верно — треугольники могут быть подобны по трем углам, а у равносторонних треугольников они всегда равны.

Второй вариант задания

Какие из следующих утверждений верны?

  1. Все высоты равностороннего треугольники равны.
  2. Существуют три прямые, которые проходят через одну точку.
  3. Если диагонали параллелограмма равны, то он является ромбом.
Решение:

Первое утверждение верно, так как у равностороннего треугольника все стороны равнозначны, а значит и все элементы, проведенные к ним, тоже. Второе утверждение тоже верно, так как нет ограничений на количество произвольных прямых, проходящих через одну точку. Третье утверждение неверно — если диагонали равны, то это либо прямоугольник, либо квадрат.

Третий вариант задания

Какие из следующих утверждений верны?

  1. Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов.
  2. Любой прямоугольник можно вписать в окружность.
  3. Через заданную точку плоскости можно провести единственную прямую.
Решение:

Первое утверждение верно из общих свойств треугольника — сумма двух сторон всегда больше третьей. Второе утверждение тоже верно — действительно, любой прямоугольник можно вписать в окружность. Третье утверждение неверно, так как я писал уже чуть выше, что нет ограничений на количество произвольных прямых, проходящих через одну точку.

Демонстрационный вариант ОГЭ 2019

Укажите номера верных утверждений.

  1. Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
  2. Треугольник со сторонами 1, 2, 4 существует.
  3. Если в ромбе один из углов равен 90° , то такой ромб — квадрат.
  4. В любом параллелограмме диагонали равны.
Решение:

Проанализируем каждое из утверждений:

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

Да, такое утверждение в геометрии есть, с дополнением » и только одну» :

«Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой, и причем только одну.»

2) Треугольник со сторонами 1, 2, 4 существует.

Для существования треугольника должно выполняться следующее правило:

Сумма двух сторон всегда больше третьей. В данном случае это не так, так как 1 + 2

Четвертый вариант задания

Какое из следующих утверждений верно?

1) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом.

2) Смежные углы всегда равны.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

Решение:

Проанализируем каждое утверждение.

1) Это утверждение верно, поскольку равенство и перпендикулярность диагоналей является одним из свойств именно квадрата.

2) Это утверждение неверно. Основание – соответствующая теорема, которой утверждается, что смежные углы в сумме имеют 180 0 , т.е. дополняют друг друга до развернутого угла. Следовательно, равенство смежных углов может иметь место только в случае, если достоверно известно, что один из них прямой.

3) Утверждение неверно. Высотой является только биссектриса, опущенная на основание равнобедренного треугольника.

Пятый вариант задания

Какое из следующих утверждений верно?

1) Если угол острый, то смежный с ним угол также является острым.

2) Если диагонали параллелограмма перпендикулярны, то этот параллелограмм является ромбом.

3) Касательная к окружности параллельна радиусу, проведённому в точку касания.

Решение:

Выполняем анализ утверждений.

1) Согласно теореме о смежных углах, их сумма всегда равна 180 0 . Это означает, что любой из смежных углов является разностью 180 0 и величины 2-го смежного угла. Если первый смежный угол острый, значит, второй равен разности 180 0 и острого угла (т.е. угла, меньшего 90 0 ), которая в любом случае окажется больше 90 0 . А угол, больший 90 0 , по определению тупой. Итак, утверждение неверно.

2) Одно из свойств ромба заключается в том, что его диагонали перпендикулярны. Однако и диагонали квадрата тоже пересекаются под прямым углом. Но поскольку квадрат является частным случаем ромба, то и в этом противоречия заданному утверждению нет. Т.е. в целом утверждение верно.

3) Одно из основных св-в касательных к окружности заключается в том, что касательная всегда перпендикулярна к радиусу, проведенному из центра этой окружности в точку касания. Оно противоречит заданному утверждению, поэтому утверждение неверно.

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Все диаметры окружности равны между собой если в параллелограмме

Все диаметры окружности равны между собой если в параллелограмме

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Источник задания: Решение 4855. ОГЭ 2018 Математика, И.В. Ященко. 36 вариантов.

Задание 20. Какие из следующих утверждений верны?

1) Существует квадрат, который не является прямоугольником.

2) Если в параллелограмме две соседние стороны равны, то такой параллелограмм является ромбом.

3) Все диаметры окружности равны между собой.

В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

1) Не верно. Любой квадрат – это частный случай прямоугольника, у которого все стороны равны.

2) Верно. В таком параллелограмме все стороны будут равны, поэтому он перейдет в ромб.

3) Верно. Для одной и той же окружности все диаметры ее равны между собой.

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Все диаметры окружности равны между собой если в параллелограмме

Какие из следующих утверждений верны?

1) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.

2) Все диаметры окружности равны между собой.

3) Один из углов треугольника всегда не превышает 60 градусов.

Если вариантов ответов несколько, укажите их в порядке возрастания без пробелов и знаков препинания

Проверим каждое из утверждений.

1) « Диагонали трапеции пересекаются и делятся точкой пересечения пополам.» — неверно, диагонали ромба пересекаются и делятся точкой пересечения пополам.

2) «Все диаметры окружности равны между собой.» — верно, все диаметры окружности равны между собой.

3) «Один из углов треугольника всегда не превышает 60 градусов.» — верно, наименьший угол в любом треугольнике всегда не превышает 60 градусов.

🎥 Видео

Если диагонали параллелограмма равны, то это ромб. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это ромб. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Все хорды одной окружности равны между собой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Все хорды одной окружности равны между собой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Если в параллелограмме диагонали равны и ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если в параллелограмме диагонали равны и ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

ПАРАЛЛЕЛОГРАММ. Задачи. Противолежащие углы равны.Скачать

ПАРАЛЛЕЛОГРАММ. Задачи. Противолежащие углы равны.

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Параллелограмм. Практическая часть - решение задачи. 8 класс.Скачать

Параллелограмм. Практическая часть - решение задачи. 8 класс.

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это прямоугольник. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

🔴 Стороны параллелограмма равны 9 и 12. Высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 Стороны параллелограмма равны 9 и 12. Высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Если диагонали параллелограмма равны, то это квадрат. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Если диагонали параллелограмма равны, то это квадрат. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика
Поделиться или сохранить к себе: