- Ваш ответ
- решение вопроса
- Похожие вопросы
- Центральные и вписанные углы
- Центральный угол и вписанный угол
- Свойства центральных и вписанных углов
- Примеры решения задач
- Тест «Окружность. Углы» 8 класс
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- Краткое описание документа:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 📽️ Видео
Видео:В угол C величиной 83° вписана окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Ваш ответ
Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать
решение вопроса
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Похожие вопросы
- Все категории
- экономические 43,282
- гуманитарные 33,619
- юридические 17,900
- школьный раздел 607,006
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Решение задач на тему центральные и вписанные углы.Скачать
Центральные и вписанные углы
О чем эта статья:
Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать
Центральный угол и вписанный угол
Окружность — замкнутая линия, все точки которой равноудалены от ее центра.
Определение центрального угла:
Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF
Определение вписанного угла:
Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую опирается.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC
Видео:Углы, вписанные в окружность. 9 класс.Скачать
Свойства центральных и вписанных углов
Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
- Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:
Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
- Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
- Вписанные углы окружности равны друг другу, если опираются на одну дугу:
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
- Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.
Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.
Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Хорда — отрезок, соединяющий две точки на окружности.
- Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.
AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.
- Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
- Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.
ㄥBAC + ㄥBDC = 180°
Видео:Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Примеры решения задач
Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.
Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?
Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°
Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°
Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°
Видео:ОГЭ 2021. Задание 18. Фигуры на квадратной решеткеСкачать
Тест «Окружность. Углы» 8 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
«Окружность. Углы» Вариант 1
Расстояние от центра окружности до прямой равно 7 см, диаметр окружности равен 16 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Касательная к окружности изображена на рисунке:
Запишите букву: ___________________________
Угол АСВ равен 60 0 , тогда дуга АВ равна
Запишите число: ___________________________
По данным чертежа найдите
градусную меру угла α.
Запишите число: ___________________________
По данным чертежа найдите
градусную меру угла β. Объясните,
почему вы так считаете?
«Окружность. Углы» Вариант 2
Расстояние от центра окружности до прямой равно 7 см, диаметр окружности равен 14 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Вписанный в окружность угол изображён на рисунке:
Запишите букву: ___________________________
Угол АВС равен 70 0 , тогда угол АОС равен
Запишите число: ___________________________
Центральный угол больше вписанного угла, опирающегося на ту же дугу, на 40 0 . Тогда градусная мера вписанного угла будет равна
Запишите число: ___________________________
По данным чертежа найдите
градусную меру угла γ.
Объясните, почему вы так
«Окружность. Углы» Вариант 3
Расстояние от центра окружности до прямой равно 6 см, диаметр окружности равен 14 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Секущая к окружности изображена на рисунке:
Запишите букву: ___________________________
Угол АСВ равен 78 0 , тогда дуга АВ равна
Запишите число: ___________________________
По данным чертежа н айдите Х.
Запишите число: ___________________________
По данным чертежа
найдите градусную меру угла β.
Объясните, почему вы так считаете?
«Окружность. Углы» Вариант 4
Расстояние от центра окружности до прямой равно 8 см, диаметр окружности равен 16 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Центральный угол изображён на рисунке:
Запишите букву: ___________________________
Угол АВС равен 67 0 , тогда угол АОС равен
Запишите число: ___________________________
Центральный угол больше вписанного угла, опирающегося на ту же дугу, на 65 0 . Тогда градусная мера вписанного угла будет равна
Запишите число: ___________________________
По данным чертежа найдите градусную меру угла Х.
Объясните, почему вы так считаете?
«Окружность. Углы» Вариант 5
Расстояние от центра окружности до прямой равно 8 см, диаметр окружности равен 14 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Касательная к окружности изображена на рисунке:
Запишите букву: ___________________________
На рисунке АОС =100 0 . Тогда АВС =
Запишите число: ___________________________
По данным чертежа найдите Х.
Запишите число: ___________________________
По данным чертежа найдите
градусную меру угла Х. Объясните,
почему вы так считаете?
«Окружность. Углы» Вариант 6
Расстояние от центра окружности до прямой равно 10 см, диаметр окружности равен 16 см. Определите, сколько общих точек имеют окружность и прямая.
Выберите один из 4 вариантов ответа:
Центральный угол изображён на рисунке:
Запишите букву: ___________________________
͜ АВ=60 0 . Тогда АСВ =
Запишите число: ___________________________
Центральный угол больше вписанного угла, опирающегося на ту же дугу, на 58 0 . Тогда градусная мера вписанного угла будет равна
Запишите число: ___________________________
По данным чертежа найдите
градусную меру угла Х.
Объясните, почему вы так
Краткое описание документа:
Данный тест по геометрии для учащихся 8 класса. Тест представлен в 6 вариантах. В каждом варианте по 5 заданий, из них первые два задания с выбором ответа, три задания — задачи. Уровень сложности заданий увеличивается. Ко многим заданиям представлен рисунок, что облегчает их решение. Варианты теста равносильны.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 942 человека из 79 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 678 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 305 человек из 69 регионов
Ищем педагогов в команду «Инфоурок»
Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать
Дистанционные курсы для педагогов
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 517 237 материалов в базе
Другие материалы
- 21.07.2015
- 850
- 0
- 21.07.2015
- 2213
- 0
- 21.07.2015
- 548
- 0
- 21.07.2015
- 767
- 5
- 21.07.2015
- 773
- 0
- 21.07.2015
- 505
- 0
- 21.07.2015
- 2576
- 9
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 21.07.2015 7286
- DOCX 419.5 кбайт
- 14 скачиваний
- Рейтинг: 1 из 5
- Оцените материал:
Настоящий материал опубликован пользователем Шляпникова Елена Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 6 месяцев
- Подписчики: 0
- Всего просмотров: 20657
- Всего материалов: 5
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Пензенской области детям запретили посещать театры, музеи и секции
Время чтения: 1 минута
Школьники Чебоксар с 27 января перейдут на дистанционный формат обучения
Время чтения: 1 минута
В Роспотребнадзоре заявили о широком распространении COVID-19 среди детей
Время чтения: 1 минута
В Петербурге открыли памятник работавшим во время блокады учителям
Время чтения: 1 минута
В России утвердили новые правила аккредитации образовательных учреждений
Время чтения: 1 минута
Все школы Оренбурга переводят на дистанционное обучение с 28 января
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
📽️ Видео
Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать
Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
В угол вписана окружность, найдите вписанный угол этой окружностиСкачать
ОГЭ по математике. Треугольник вписан в окружность . (Вар. 4) √ 17 модуль геометрия ОГЭСкачать
2035 В окружности с центром в точке О отрезки AC и BD диаметрыСкачать
Параллельные прямые | Математика | TutorOnlineСкачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать
ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать