Вписанный угол опирающийся на диаметр окружности прямой почему

Вписанный угол окружности

Вписанный угол окружности — это угол, образованный двумя хордами, исходящими из одной точки, то есть вписанным углом называется угол, вершина которого лежит на окружности.

Вписанный угол опирающийся на диаметр окружности прямой почему

Угол ABC — вписанный угол. ∠ABC опирается на дугу AC, заключённую между его сторонами.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теорема о вписанном угле

Теорема:

Вписанный угол измеряется половиной дуги, на которую он опирается.

Это следует понимать так: вписанный угол содержит в два раза меньше градусов, чем дуга, на которую он опирается:

Вписанный угол опирающийся на диаметр окружности прямой почему

∠ABC =1Вписанный угол опирающийся на диаметр окружности прямой почемуAC.
2

При доказательстве этой теоремы следует рассмотреть три возможных случая расположения вписанного угла относительно центра окружности.

Первый случай. Сторона вписанного угла проходит через центр окружности.

Вписанный угол опирающийся на диаметр окружности прямой почему

Соединим точку A с центром круга (точкой O). Получим равнобедренный треугольник AOB, в котором AO = OB, как радиусы одной окружности. Следовательно, ∠A = ∠B, как углы при основании равнобедренного треугольника.

Вписанный угол опирающийся на диаметр окружности прямой почему

Так как ∠AOC — внешний угол равнобедренного треугольника, то:

а так как углы A и B равны, то

∠B =1∠AOC.
2

Но ∠AOC — центральный угол, значит ∠AOC = Вписанный угол опирающийся на диаметр окружности прямой почемуAC, следовательно ∠B измеряется половиной дуги AC:

∠ABC = ∠B =1Вписанный угол опирающийся на диаметр окружности прямой почемуAC.
2

Второй случай. Центр окружности лежит между сторонами вписанного угла.

Вписанный угол опирающийся на диаметр окружности прямой почему

Проведём диаметр BD. Угол ABC разбился на два угла: 1 и 2.

Вписанный угол опирающийся на диаметр окружности прямой почему

Точка D разделяет дугу AC на две дуги: Вписанный угол опирающийся на диаметр окружности прямой почемуAD и Вписанный угол опирающийся на диаметр окружности прямой почемуDC. По доказательству, рассмотренному в первом случае:

1 =1Вписанный угол опирающийся на диаметр окружности прямой почемуAD и 2 =1Вписанный угол опирающийся на диаметр окружности прямой почемуDC.
22

Следовательно, весь угол ABC будет измеряться половиной дуги AC:

1 + 2 =1Вписанный угол опирающийся на диаметр окружности прямой почемуAD +1Вписанный угол опирающийся на диаметр окружности прямой почемуDC
22
∠ABC =1Вписанный угол опирающийся на диаметр окружности прямой почемуAC.
2

Третий случай. Центр окружности лежит вне вписанного угла.

Вписанный угол опирающийся на диаметр окружности прямой почему

Проведём диаметр BD.

Вписанный угол опирающийся на диаметр окружности прямой почему

Но ∠ABD измеряется половиной дуги AD , а ∠CBD измеряется половиной дуги CD. Следовательно,

∠ABC =1(Вписанный угол опирающийся на диаметр окружности прямой почемуADВписанный угол опирающийся на диаметр окружности прямой почемуCD),
2
∠ABC =1Вписанный угол опирающийся на диаметр окружности прямой почемуAC.
2

Видео:Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Угол, опирающийся на диаметр окружности, прямой. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Следствия из теоремы

1. Все вписанные углы, опирающиеся на одну и ту же дугу, равны между собой, так как они измеряются половиной одной и той же дуги.

Вписанный угол опирающийся на диаметр окружности прямой почему

2. Вписанный угол, опирающийся на диаметр, — прямой, так как он опирается на половину окружности.

Половина окружности содержит 180°, значит, угол, опирающийся на диаметр, содержит 90°.

Видео:Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Вписанный угол, опирающийся на диаметр окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанный угол, опирающийся на диаметр

Вписанный угол, опирающийся на диаметр, обладает полезным свойством, вытекающим из теоремы о вписанном угле.

Свойство вписанного угла, опирающегося на диаметр

(следствие из теоремы о вписанном угле)

Вписанный угол, опирающийся на диаметр, прямой.

Вписанный угол опирающийся на диаметр окружности прямой почемуДано:

Так как AC- диаметр, то ∠AOC=180º.

∠AOC — центральный, ∠ABC — соответствующий ему вписанный угол.

Вписанный угол опирающийся на диаметр окружности прямой почемуСледовательно, по теореме о вписанном угле,

Вписанный угол опирающийся на диаметр окружности прямой почему

Вписанный угол опирающийся на диаметр окружности прямой почему

Что и требовалось доказать.

Из этого следует, например, что если центр описанной окружности лежит на стороне треугольника, то угол напротив этой стороны — прямой.

Если центр описанной окружности лежит на диагонали четырехугольника, то угол напротив этой диагонали — прямой.

Другой вариант формулировки следствия:

Диаметр виден из любой точки окружности под углом 90º.

Если вписанный угол связать с дугой, то следствие из теоремы о вписанном угле звучит так:

Вписанный угол опирающийся на диаметр окружности прямой почему

Вписанный угол, опирающийся на полуокружность — прямой.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Центральные и вписанные углы

Вписанный угол опирающийся на диаметр окружности прямой почему

О чем эта статья:

Видео:Вписанный угол, опирающийся на хорду, равную радиусу окружностиСкачать

Вписанный угол, опирающийся на хорду, равную радиусу окружности

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вписанный угол опирающийся на диаметр окружности прямой почему

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вписанный угол опирающийся на диаметр окружности прямой почему

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:23 Угол, опирающийся на диаметрСкачать

23 Угол, опирающийся на диаметр

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вписанный угол опирающийся на диаметр окружности прямой почему

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вписанный угол опирающийся на диаметр окружности прямой почему

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вписанный угол опирающийся на диаметр окружности прямой почему

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вписанный угол опирающийся на диаметр окружности прямой почему

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вписанный угол опирающийся на диаметр окружности прямой почему

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вписанный угол опирающийся на диаметр окружности прямой почему

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вписанный угол опирающийся на диаметр окружности прямой почему

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вписанный угол опирающийся на диаметр окружности прямой почему

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вписанный угол опирающийся на диаметр окружности прямой почему

ㄥBAC + ㄥBDC = 180°

Видео:Свойство вписанного угла, опирающегося на диаметрСкачать

Свойство вписанного угла, опирающегося на диаметр

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вписанный угол опирающийся на диаметр окружности прямой почему

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вписанный угол опирающийся на диаметр окружности прямой почему

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вписанный угол опирающийся на диаметр окружности прямой почему

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🎦 Видео

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Один на миллион 😍 Филдер Кросс в Моделисте ⛰️ Полный привод 🚙Скачать

Один на миллион 😍 Филдер Кросс в Моделисте ⛰️ Полный привод 🚙

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 классСкачать

Вписанный угол, опирающийся на диаметр (полуокружность). Геометрия 8-9 класс

Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Вписанный угол, который опирается на диаметрСкачать

Вписанный угол, который опирается на диаметр

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Вписанный угол и диаметр ▶ (Мини-ликбез №7)Скачать

Вписанный угол и диаметр ▶ (Мини-ликбез №7)

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Вписанный угол опирающийся на полуокружность пряомой док-во за 10 секундСкачать

Вписанный угол опирающийся на полуокружность пряомой док-во за 10 секунд

Теорема Фалеса об угле, опирающемся на диаметрСкачать

Теорема Фалеса об угле, опирающемся на диаметр

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол
Поделиться или сохранить к себе: