Вписанная окружность все свойства теоремы

Вписанная окружность

Вписанная окружность все свойства теоремы

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Вписанная окружность все свойства теоремы
    • Четырехугольник
      Вписанная окружность все свойства теоремы
    • Многоугольник
      Вписанная окружность все свойства теоремы

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Вписанная и описанная окружность - от bezbotvyСкачать

    Вписанная и описанная окружность - от bezbotvy

    Вписанная окружность

    Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

    Вписанная окружность все свойства теоремы

    Теорема

    В любой треугольник можно вписать окружность.

    Доказательство

    Дано: произвольный Вписанная окружность все свойства теоремыАВС.

    Доказать: в Вписанная окружность все свойства теоремыАВС можно вписать окружность.

    Доказательство:

    1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

    Вписанная окружность все свойства теоремы

    2. Точка О равноудалена от сторон Вписанная окружность все свойства теоремыАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны Вписанная окружность все свойства теоремыАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в Вписанная окружность все свойства теоремыАВС. Теорема доказана.

    Замечание 1

    В треугольник можно вписать только одну окружность.

    Доказательство

    Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

    Замечание 2

    Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

    Доказательство

    На рисунке 2 мы видим, что Вписанная окружность все свойства теоремыАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: Вписанная окружность все свойства теоремы. Тогда, по свойству площадей, площадь треугольника Вписанная окружность все свойства теоремыАВС выражается формулой: Вписанная окружность все свойства теоремы, где Вписанная окружность все свойства теоремы— периметр Вписанная окружность все свойства теоремыАВС. Что и требовалось доказать.

    Замечание 3

    Не во всякий четырехугольник можно вписать окружность.

    Доказательство

    Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

    Вписанная окружность все свойства теоремы

    Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

    В любом описанном четырехугольнике суммы противоположных сторон равны.

    Доказательство

    Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

    Вписанная окружность все свойства теоремы

    На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = Вписанная окружность все свойства теоремыи ВС + АD = Вписанная окружность все свойства теоремы, следовательно, АВ + СD = ВС + АD.

    Верно и обратное утверждение:

    Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

    Доказательство

    Пусть в выпуклом четырехугольнике АВСD

    АВ + СD = ВС + АD. (1)

    Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

    Вписанная окружность все свойства теоремы

    Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

    Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

    Вписанная окружность все свойства теоремы

    Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

    АВ + С1D1 = ВС1 + AD1. (2)

    Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

    С1D1 + С1С + D1D = ВС + АDАВ.

    Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

    т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

    Поделись с друзьями в социальных сетях:

    Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Окружность. Основные теоремы

    Определения

    Центральный угол – это угол, вершина которого лежит в центре окружности.

    Вписанный угол – это угол, вершина которого лежит на окружности.

    Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

    Теорема

    Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

    Доказательство

    Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:

    Вписанная окружность все свойства теоремы

    Треугольник (AOB) – равнобедренный, (AO = OB) , (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC) , откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover) .

    Теперь рассмотрим произвольный вписанный угол (ABC) . Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:

    1) диаметр разрезал угол на два угла (angle ABD, angle CBD) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

    2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD) , у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.

    Вписанная окружность все свойства теоремы

    Следствия

    1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

    2. Вписанный угол, опирающийся на полуокружность, прямой.

    3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

    Определения

    Существует три типа взаимного расположения прямой и окружности:

    1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).

    2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).

    3) прямая (c) не имеет общих точек с окружностью (рис. 5).

    Вписанная окружность все свойства теоремы

    Теорема

    1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

    2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

    Следствие

    Отрезки касательных, проведенных из одной точки к окружности, равны.

    Доказательство

    Проведем к окружности из точки (K) две касательные (KA) и (KB) :

    Вписанная окружность все свойства теоремы

    Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB) .

    Следствие

    Центр окружности (O) лежит на биссектрисе угла (AKB) , образованного двумя касательными, проведенными из одной точки (K) .

    Теорема об угле между секущими

    Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

    Доказательство

    Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:

    Вписанная окружность все свойства теоремы

    Покажем, что (angle DMB = dfrac(buildrelsmileover — buildrelsmileover)) .

    (angle DAB) – внешний угол треугольника (MAD) , тогда (angle DAB = angle DMB + angle MDA) , откуда (angle DMB = angle DAB — angle MDA) , но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB — angle MDA = fracbuildrelsmileover — fracbuildrelsmileover = frac(buildrelsmileover — buildrelsmileover)) , что и требовалось доказать.

    Теорема об угле между пересекающимися хордами

    Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover+buildrelsmileoverright)]

    Доказательство

    (angle BMA = angle CMD) как вертикальные.

    Вписанная окружность все свойства теоремы

    Из треугольника (AMD) : (angle AMD = 180^circ — angle BDA — angle CAD = 180^circ — frac12buildrelsmileover — frac12buildrelsmileover) .

    Но (angle AMD = 180^circ — angle CMD) , откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover + frac12cdotbuildrelsmileover = frac12(buildrelsmileover + buildrelsmileover).]

    Теорема об угле между хордой и касательной

    Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

    Доказательство

    Пусть прямая (a) касается окружности в точке (A) , (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB) , пересекает (a) в точке (M) . Докажем, что (angle BAM = frac12cdot buildrelsmileover) .

    Вписанная окружность все свойства теоремы

    Обозначим (angle OAB = alpha) . Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha) . Таким образом, (buildrelsmileover = angle AOB = 180^circ — 2alpha = 2(90^circ — alpha)) .

    Так как (OA) – радиус, проведённый в точку касания, то (OAperp a) , то есть (angle OAM = 90^circ) , следовательно, (angle BAM = 90^circ — angle OAB = 90^circ — alpha = frac12cdotbuildrelsmileover) .

    Теорема о дугах, стягиваемых равными хордами

    Равные хорды стягивают равные дуги, меньшие полуокружности.

    И наоборот: равные дуги стягиваются равными хордами.

    Доказательство

    1) Пусть (AB=CD) . Докажем, что меньшие полуокружности дуги (buildrelsmileover=buildrelsmileover) .

    Вписанная окружность все свойства теоремы

    (triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD) . Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover, buildrelsmileover) соответственно, то (buildrelsmileover=buildrelsmileover) .

    2) Если (buildrelsmileover=buildrelsmileover) , то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD) . Следовательно, и (AB=CD) .

    Теорема

    Если радиус делит хорду пополам, то он ей перпендикулярен.

    Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.

    Вписанная окружность все свойства теоремы

    Доказательство

    1) Пусть (AN=NB) . Докажем, что (OQperp AB) .

    Рассмотрим (triangle AOB) : он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB) .

    2) Пусть (OQperp AB) . Докажем, что (AN=NB) .

    Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB) .

    Теорема о произведении отрезков хорд

    Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

    Доказательство

    Пусть хорды (AB) и (CD) пересекаются в точке (E) .

    Вписанная окружность все свойства теоремы

    Рассмотрим треугольники (ADE) и (CBE) . В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD) , а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).

    Тогда (dfrac = dfrac) , откуда (AEcdot BE = CEcdot DE) .

    Теорема о касательной и секущей

    Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

    Доказательство

    Пусть касательная проходит через точку (M) и касается окружности в точке (A) . Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB . Покажем, что (MBcdot MC = MA^2) .

    Вписанная окружность все свойства теоремы

    Рассмотрим треугольники (MBA) и (MCA) : (angle M) – общий, (angle BCA = 0,5cdotbuildrelsmileover) . По теореме об угле между касательной и секущей, (angle BAM = 0,5cdotbuildrelsmileover = angle BCA) . Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.

    Из подобия треугольников (MBA) и (MCA) имеем: (dfrac = dfrac) , что равносильно (MBcdot MC = MA^2) .

    Следствие

    Произведение секущей, проведённой из точки (O) , на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O) :

    📹 Видео

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

    Вписанная и описанная окружности | Лайфхак для запоминания

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Все о вписанных и описанных окружностях с нуля | PARTAСкачать

    Все о вписанных и описанных окружностях с нуля | PARTA

    Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

    Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

    Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

    Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023Скачать

    Вся геометрия 7–9 класс с нуля | ОГЭ МАТЕМАТИКА 2023

    Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

    Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

    Вписанная и описанная окружность | Теорема синусов | Теоремы об окружностях - 2Скачать

    Вписанная и описанная окружность | Теорема синусов | Теоремы об окружностях - 2

    8 класс, 39 урок, Описанная окружностьСкачать

    8 класс, 39 урок, Описанная окружность

    Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

    Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

    Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬСкачать

    Урок по теме ВПИСАННАЯ ОКРУЖНОСТЬ

    Вписанная окружностьСкачать

    Вписанная окружность

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать

    Геометрия 8 класс (Урок№32 - Вписанная окружность.)
    Поделиться или сохранить к себе: