Вписанная и описанная окружность в пирамиду

Сфера, вписанная в пирамиду
Вписанная и описанная окружность в пирамидуБиссекторная плоскость. Основное свойство биссекторной плоскости
Вписанная и описанная окружность в пирамидуСфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы
Вписанная и описанная окружность в пирамидуРадиус сферы, вписанной в правильную n — угольную пирамиду
Вписанная и описанная окружность в пирамидуСфера, вписанная в треугольную пирамиду. Формула для радиуса вписанной сферы

Вписанная и описанная окружность в пирамиду

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Биссекторная плоскость. Основное свойство биссекторной плоскости

Определение 1. Биссекторной плоскостью двугранного угла называют такую плоскость, которая проходит через ребро двугранного угла и делит этот угол на два равных двугранных угла (рис. 1).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Утверждение 1. Точка, расположенная внутри двугранного угла, находится на одном и том же расстоянии от граней этого угла тогда и только тогда, когда она лежит на биссекторной плоскости.

Доказательство. Рассмотрим произвольную точку O, расположенную внутри двугранного угла, и проведем через эту точку плоскость δ , перпендикулярную к ребру AB двугранного угла (рис. 2).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Плоскость δ пересекает ребро AB двугранного угла в точке C, а грани двугранного угла α и β по лучам CD и CE соответственно. Угол DCE является линейным углом двугранного угла. Биссекторная плоскость γ пересекает плоскость δ по биссектрисе CF линейного угла DCE .

Таким образом, справедливость утверждения вытекает из соответствующих теорем о свойствах биссектрисы угла. Доказано.

Следствие 1. Если сфера, расположенная внутри двугранного угла, касается каждой из плоскостей граней этого угла, то центр сферы находится на биссекторной плоскости двугранного угла (рис. 3).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Сфера, вписанная в пирамиду. Свойства пирамиды, описанной около сферы

Определение 2. Сферой, вписанной в пирамиду, называют такую сферу, которая касается плоскостей всех граней пирамиды, причем точки касания лежат на гранях пирамиды (рис. 4).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Определение 3. Если сфера вписана в пирамиду, то пирамиду называют описанной около сферы.

Если сфера вписана в пирамиду, то она касается граней каждого внутреннего двугранного угла, образованного соседними гранями пирамиды. В соответствии со следствием 1 центр вписанной в пирамиду сферы должен находиться в точке пересечения биссекторных плоскостей всех внутренних двугранных углов, образованных соседними гранями пирамиды.

Если у пирамиды нет точки, в которой пересекаются биссекторные плоскости всех внутренних двугранных углов, образованных соседними гранями пирамиды, то в такую пирамиду нельзя вписать сферу.

Замечание 1. Для того, чтобы проверить, можно ли в пирамиду вписать сферу, достаточно проверить, существует ли точка пересения биссекторных плоскостей всех внутренних двугранных углов при основании пирамиды. Если такая точка существует, то она будет равноудалена как от основания пирамиды, так и от каждой из боковых граней.

Рассмотрим несколько типов пирамид, в которые можно вписать сферу.

Утверждение 2. Если у пирамиды SA1A2 . An основание O перпендикуляра, опущенного из вершины S на плоскость основания пирамиды, лежит внутри многоугольника A1A2 . An , а все боковые грани пирамиды наклонены под одним и тем же углом к плоскости основания пирамиды, то в такую пирамиду можно вписать сферу.

Доказательство. Пусть все боковые грани пирамиды наклонены к плоскости основания под углом φ , а высота пирамиды равна h. Рассмотрим, например, боковую грань SA1A2 и проведем в ней высоту SB (рис. 5).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

По теореме о трех перпендикулярах отрезок OB перпендикулярен ребру A1A2 . Следовательно, угол SBO является линейным углом двугранного угла между боковой гранью SA1A2 и плоскостью основания пирамиды и равен φ. Биссекторная плоскость этого двугранного угла пересекает высоту пирамиды в точке O’ (рис. 6).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Катет OB прямоугольного треугольника SOB выражается через высоту пирамиды h и угол φ по формуле

Катет OO’ прямоугольного треугольника OO’B выражается через высоту пирамиды h и угол φ по формуле

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Поскольку длина отрезка OO’ не зависит от выбора боковой грани пирамиды, то биссекторные плоскости всех внутренних двугранных углов при основании пирамиды пересекаются в точке O’, которая и является центром вписанной в пирамиду сферы.

Доказательство утверждения 2 завершено.

Поскольку у любой правильной пирамиды все внутренние двугранные углы при основании равны, то справедливо

Следствие 2. В любую правильную пирамиду можно вписать сферу, причем ее радиус R выражается через высоту пирамиды h и внутренний двугранный угол при основании пирамиды φ по формуле

Вписанная и описанная окружность в пирамиду(1)

Видео:Пирамиды, в которых высота проходит через центр описанной около основания окружностиСкачать

Пирамиды,  в которых высота проходит через центр описанной около основания окружности

Радиус сферы, вписанной в правильную n — угольную пирамиду

Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим символом O’ центр вписанной в пирамиду сферы, а буквой O – центр основания пирамиды. Проведем плоскость через высоту пирамиды SO и апофему SB какой-либо боковой грани (рис. 7).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Буквой R на рисунке 7 обозначен радиус вписанной в пирамиду сферы, буквой r – радиус вписанной в основание пирамиды окружности, а буквой φ – внутренний двугранный угол при основании пирамиды. Из прямоугольного треугольника OSB получаем

Вписанная и описанная окружность в пирамиду(2)

В силу следствия 2 из формул (1) и (2) получаем

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

из формулы (3) получаем соотношение

Вписанная и описанная окружность в пирамиду

Ответ. Вписанная и описанная окружность в пирамиду

Следствие 3. Радиус сферы, вписанной в правильную треугольную пирамиду с высотой h и ребром основания a, равен

Вписанная и описанная окружность в пирамиду

Следствие 4. Радиус сферы, вписанной в правильный тетраэдр с ребром a, равен

Вписанная и описанная окружность в пирамиду

Следствие 5. Радиус сферы, вписанной в правильную четырехугольную пирамиду с высотой h и ребром основания a, равен

Вписанная и описанная окружность в пирамиду

Следствие 6. Радиус сферы, вписанной в правильную шестиугольную пирамиду с высотой h и ребром основания a, равен

Вписанная и описанная окружность в пирамиду

Видео:Пирамида и шар. Практическая часть. 11 класс.Скачать

Пирамида и шар. Практическая часть. 11 класс.

Сфера, вписанная в треугольную пирамиду.
Формула для радиуса вписанной сферы

Утверждение 3. В любую треугольную пирамиду можно вписать сферу.

Доказательство. Доказательство этого утверждения напоминает планиметрическое доказательство возможности вписать окружность в произвольный треугольник.

Действительно, пусть SABC – произвольный тетраэдр. Биссекторная плоскость внутреннего двугранного угла с ребром AC и биссекторная плоскость внутреннего двугранного угла с ребром AB пересекаются по некоторой прямой, проходящей через вершину A. Биссекторная плоскость внутреннего двугранного угла в ребром BC пересекает эту прямую в единственной точке O , которая и является центром вписанной сферы (рис. 8).

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

Получим формулу, позволяющую вычислить радиус вписанной в тетраэдр SABC сферы. Для этого заметим, что объем пирамиды SABC равен сумме объемов пирамид OABC, OSCA, OSAB, OSCB, причем высота каждой из пирамид OABC, OSCA, OSAB, OSCB равна радиусу R вписанной в пирамиду SABC сферы. Если обозначить площади граней тетраэдра SABC символами

а объемы пирамид SABC, OABC, OSCA, OSAB, OSCB – символами

то справедливы следующие равенства:

Вписанная и описанная окружность в пирамиду

Вписанная и описанная окружность в пирамиду

где символом Sполн обозначена площадь полной поверхности пирамиды SABC.

Вписанная и описанная окружность в пирамиду

Замечание 2. Если в пирамиду (необязательно треугольную) можно вписать сферу, то, рассуждая аналогично, можно получить следующую формулу для радиуса вписанной в пирамиду сферы

Вписанная и описанная окружность в пирамиду

где символами Vпир и Sполн обозначены объем и площадь полной поверхности пирамиды соответственно.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Пирамида

Пирамида – многогранник, основание которого — многоугольник , а остальные грани — треугольники, имеющие общую вершину.

Вписанная и описанная окружность в пирамиду

По числу углов основания различают пирамиды треугольные , четырёхугольные и т. д.

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.

Вписанная и описанная окружность в пирамиду

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Вписанная и описанная окружность в пирамиду

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.

Вписанная и описанная окружность в пирамиду

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Некоторые свойства пирамиды

1) Если все боковые ребра равны, то

около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр

Вписанная и описанная окружность в пирамиду

боковые ребра образуют с плоскостью основания равные углы

Вписанная и описанная окружность в пирамиду

Верно и обратное.

Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.

Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.

2) Если все грани пирамиды наклонены к плоскости основания под одним углом , то в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр

Вписанная и описанная окружность в пирамиду

Верно и обратное.

Видео:Шар, вписанный в пирамиду, или пирамида, описанная около шара.Скачать

Шар, вписанный в пирамиду, или пирамида, описанная около шара.

Виды пирамид

Пирамида называется правильной , если основанием её является правильный многоугольник, а вершина проецируется в центр основания.

Вписанная и описанная окружность в пирамиду

Для правильной пирамиды справедливо:

– боковые ребра правильной пирамиды равны;

– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;

– в любую правильную пирамиду можно вписать сферу;

– около любой правильной пирамиды можно описать сферу;

– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Вписанная и описанная окружность в пирамиду

Пирамида называется прямоугольной , если одно из боковых рёбер пирамиды перпендикулярно основанию. Тогда это ребро и есть высота пирамиды.

Вписанная и описанная окружность в пирамиду

Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.

Вписанная и описанная окружность в пирамиду

Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.

Видео:Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

Нахождение радиуса шара (сферы), вписанного в правильную пирамиду

В данной публикации представлены формулы, с помощью которых можно найти радиус шара (сферы), вписанного в правильную пирамиду: треугольную, четырехугольную, шестиугольную и тетраэдр.

Видео:ПЛОЩАДЬ КОЛЬЦА. Сделай выбор: на чьей ты стороне?Скачать

ПЛОЩАДЬ КОЛЬЦА. Сделай выбор: на чьей ты стороне?

Формулы расчета радиуса шара (сферы)

Приведенная ниже информация применима только к правильным пирамидам. Формула для нахождения радиуса зависит от вида фигуры, рассмотрим самые распространенные варианты.

Правильная треугольная пирамида

Вписанная и описанная окружность в пирамиду

    a – ребро основания пирамиды, т.е. это равные отрезки AB, AC и BC;

Если известны значения этих величин, то найти радиус (r) вписанного шара/сферы можно по формуле:

Вписанная и описанная окружность в пирамиду

Частный случай правильной треугольной пирамиды – это правильный тетраэдр. Для него формула нахождения радиуса выглядит следующим образом:

Вписанная и описанная окружность в пирамиду

Правильная четырехугольная пирамида

Вписанная и описанная окружность в пирамиду

  • a – ребро основания пирамиды, т.е. AB, BC, CD и AD;
  • EF – высота пирамиды (h).

Радиус (r) вписанного шара/сферы рассчитывается так:

Вписанная и описанная окружность в пирамиду

Правильная шестиугольная пирамида

Вписанная и описанная окружность в пирамиду

  • a – ребро основания пирамиды, т.е. AB, BC, CD, DE, EF, AF;
  • GL – высота пирамиды (h).

Радиус (r) вписанного шара/сферы вычисляется по формуле:

💥 Видео

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Пирамиды, в которых высота проходит через центр вписанной в основание окружностиСкачать

Пирамиды,  в которых высота проходит через центр вписанной в основание окружности

ЕГЭ по математике - Шар в пирамидеСкачать

ЕГЭ по математике - Шар в пирамиде

ЕГЭ Задание 14 Пирамида вписана в сферуСкачать

ЕГЭ Задание 14 Пирамида вписана в сферу

Быстро находим радиус описанной сферыСкачать

Быстро находим радиус описанной сферы

Пирамида, вписанная в шар, или, шар, описанный около пирамиды.Скачать

Пирамида, вписанная в шар, или, шар, описанный около пирамиды.

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Вычисление радиуса сферы, вписанной в правильную треугольную пирамидуСкачать

Вычисление радиуса сферы, вписанной в правильную треугольную пирамиду
Поделиться или сохранить к себе: