Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.
Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.
- Свойства вписанной окружности
- В треугольник
- В четырехугольник
- Примеры вписанной окружности
- Верные и неверные утверждения
- Окружность вписанная в угол
- В параллелограмм вписана окружность
- Всё о параллелограммах
- Определение параллелограмма
- Свойства параллелограмма
- Признаки параллелограмма
- Теоремы параллелограмма
- Параллелограммом является выпуклый четырехугольник
- Противоположные стороны и углы попарно равны
- Точка пересечения диагоналей разделяет их пополам
- Углы параллелограмма
- Свойства диагоналей параллелограмма
- Как вычислить площадь параллелограмма?
- Как вписать параллелограмм в окружность?
- Как вписать окружность в параллелограмм?
- Как начертить параллелограмм?
- Алгоритм построения квадрата
- Построение ромба
- Как построить прямоугольник
- Трапеция — это параллелограмм?
- Средняя линия параллелограмма
- Параллелограмм, у которого все стороны равны
- Ось симметрии параллелограмма
- 📺 Видео
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника.
R — радиус описанной около треугольника.
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих
сторон равны, то окружность, может быть, вписана (Теорема Пито). - Центр вписанной окружности и середины двух
диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона). - Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается
окружность и любая из сторон четырехугольника. - Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
- Треугольник
- Четырехугольник
- Многоугольник
Примеры описанного четырехугольника:
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника:
равносторонний, равнобедренный,
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной
в четырехугольник вычисляется по одной и той же формуле. Верное утверждение. - Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному
углу опирающемуся на ту же дугу. Неверное утверждение. - Радиус вписанной окружности в прямоугольный треугольник равен
половине разности суммы катетов и гипотенузы. Верное утверждение. - Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем
три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол,
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести,
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности
измеряется в км, м, см, мм и других единицах измерения.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
В параллелограмм вписана окружность
Если в условии задачи сказано, что в параллелограмм вписана окружность, то что сразу можно сказать об этом параллелограмме?
Для этого надо вспомнить, когда в четырехугольник можно вписать окружность. Это можно сделать лишь в том случае, если суммы противолежащих сторон четырехугольника равны.
Это условие выполняется только для тех параллелограммов, у которых все стороны равны, то есть только для ромба (и квадрата, как частного случая ромба).
Следовательно, если известно, что в параллелограмм можно вписать окружность, сразу можно сделать вывод, что все его стороны равны, и для него справедливы все свойства ромба. Если же дополнительно сказано, что хотя бы один из углов этого параллелограмма прямой, то такой параллелограмм — квадрат.
Радиус вписанной в ромб окружности можно найти по формуле
где S — площадь ромба, p — его полупериметр;
или как половину высоты ромба
1) В параллелограмм вписана окружность. Найти периметр параллелограмма, если одна из его сторон равна 10 см.
Из всех параллелограммов вписать окружность можно только в ромб (и квадрат). У ромба все стороны равны.
2) В параллелограмм вписана окружность. Найти её радиус, если высота параллелограмма равна 12 см.
Из параллелограммов вписать окружность можно в ромб (и квадрат). Радиус вписанной в ромб (и квадрат) окружности равен половине его высоты:
3) В параллелограмм вписана окружность. Найти её радиус, если диагонали параллелограмма равны 6 см и 8 см.
Из всех параллелограммов окружность можно вписать в ромб (и квадрат. У квадрата диагонали равны, следовательно, в задаче речь идёт о ромбе).
Пусть ABCD — ромб, AC=6 см, BD=8 см.
Рассмотрим треугольник AOB.
По теореме Пифагора
полупериметр — p=2a=2∙AB=25=10 см.
Следовательно, радиус вписанной окружности равен
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Всё о параллелограммах
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Определение параллелограмма
С этой фигурой знакомы все, освоившие курс школьной программы. Впервые с понятием «параллелограмм» встречаются в 8 классе на уроках геометрии.
Параллелограмм — геометрическая фигура, являющаяся разновидностью четырехугольника. Противоположные стороны параллельны.
Стоит отметить, что всем известные фигуры, такие как квадрат, ромб, прямоугольник, являются параллелограммами. Исходя из этого, им можно дать следующие определения:
- Квадрат — параллелограмм с равными сторонами, пересекающимися под углом 90 градусов.
- Ромб — параллелограмм с равными между собой сторонами, не пересекающимися под углом 90 градусов.
- Прямоугольник — параллелограмм с неравными между собой сторонами, но пересекающимися под прямым углом.
Видео:Построить описанную окружность (Задача 1)Скачать
Свойства параллелограмма
Для того чтобы определить параллелограмм, нужно обладать знанием о его свойствах. Рассмотрим их на примере четырехугольника MNPK.
- Длина противоположных сторон фигуры одинакова.
- Противоположные стороны параллельны.
- Углы, являющиеся противоположными, равны.
- Сумма всех четырех углов составляет 360 градусов.
∠NMK+∠NPK +∠MNP+∠MKP = 360°
- Сумма двух соседних углов равна 180 градусов.
- Диагонали разделяют параллелограмм на два треугольника, равные между собой.
- При пересечении диагоналей образуется точка пересечения, представляющая собой центр симметрии.
- Диагонали пересекаются и точка их пересечения разделяет каждую диагональ пополам.
- Биссектриса, проведенная из любого угла, отделает от четырехугольника равнобедренный треугольник.
Видео:Вписанная и описанная около равнобедренного треугольника, окружностьСкачать
Признаки параллелограмма
Четырехугольник MNPK можно называть параллелограммом при выполнении минимум одного условия:
- Противоположные стороны равны парами: MK=NP, MN=PK.
- Противоположные углы равны парами: ∠NMK=∠NPK, ∠MNP=∠MKP.
- Диагонали пересекаются, и точка их пересечения разделяет каждую диагональ пополам.
- Противоположные стороны равны и параллельны между собой: MK=NP, MN|PK.
- Сумма квадратов двух диагоналей равняется сумме квадратов четырех его сторон: MP²+NK²=MN²+NP²+PK²+MK².
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
Теоремы параллелограмма
Все существующие теоремы доказывают свойства параллелограмма и исходят из определения о том, что это четырехугольник с противоположно расположенными параллельными сторонами.
Основные теоремы доказывают, что:
- параллелограммом является выпуклый четырехугольник;
- противоположные стороны попарно равны;
- углы, являющиеся противоположными, попарно равны;
- точка пересечения диагоналей разделает их пополам.
Параллелограммом является выпуклый четырехугольник
Многоугольник признается выпуклым при условии отсутствия продления до прямой хотя бы одной из сторон, а все оставшиеся стороны будут располагаться по одну сторону от этой прямой.
Пусть дан параллелограмм MNPK, сторона MN противоположна PK, а MK противоположна NP. Следовательно, исходя из определения, следует вывод о том, что MN || PK, а MK || NP.
Параллельные отрезки общих точек соприкосновения не имеют. Следовательно, PK находится со стороной MN по одну сторону. Отрезок NP соединяет точку N отрезка MN с точкой P отрезка PK. Противоположный отрезок MK соединяет оставшиеся две точки отрезков, что дает право утверждать о нахождении отрезков NP и MK по одну сторону от прямой MN. Исходя из всего вышесказанного, можно сделать вывод о том, что три стороны PK, NP и MK располагаются по одну сторону от отрезка MN.
Аналогичный алгоритм доказательства предположения о нахождении трех других сторон по одну сторону относительно остальных.
Противоположные стороны и углы попарно равны
Имеется четырехугольник MNPK, у которого MK=NP, MN=PK, ∠NMK=∠NPK, ∠MNP=∠MKP.
Параллелограмм — это, как мы знаем, четырехугольник. Следовательно, имеет 2 диагонали. Зная о том, что это выпуклая фигура, делаем вывод о делении фигуры на два треугольника. В нашем случае образовались треугольники MNP и MKP.
У треугольников имеется общее — сторона MP. ∠NPM=∠PMK, а ∠NMP=∠MPK, так как накрест лежащие углы, пересекая параллельные прямые, равны.
Следовательно, ΔMNP=ΔMKP, так как одна общая сторона и два равных смежных угла. Отсюда NP=MK, MN=PK.
∠NPM=∠PMK и ∠NMP=∠MPK
Из равенств следует, что ∠NMK=∠NPK.
Таким образом, теорема о равенстве противоположных углов и сторон доказана.
Точка пересечения диагоналей разделяет их пополам
Зная, что параллелограмм представляет собой выпуклый четырёхугольник, можно сказать о наличии двух пересекающихся диагоналей.
Есть четырехугольник MNPK с диагоналями NK и PM, пересекающимися в точке O. Возьмем два полученных треугольника MNO и PKO.
Из свойства противоположно лежащих сторон параллелограмма следует равенство MN=PK. Угол MNO и угол OKP — накрест лежащие, следовательно, они равны. Аналогично, два других угла — NMO и OPK — являются равными. Делаем вывод о равенстве треугольников MNO и PKO по стороне и двум углам.
Из рисунка видно, что углы MON и KOP вертикальные, а значит, они равны.
Зная о равенстве образовавшихся треугольников, можно утверждать и о равенстве всех соответствующих элементов. Сторона MO равна стороне PO, как и сторона NO=OK. Каждая из пар вместе представляет собой диагональ параллелограмма.
Таким образом, теорема о делении диагоналей пополам доказана.
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Углы параллелограмма
Для углов действует правило, согласно которому смежные углы в сумме дают 180 градусов, а два противоположных равны друг другу. Основываясь на этих утверждениях, значения остальных углов находятся по формуле:
Видео:8 класс, 38 урок, Вписанная окружностьСкачать
Свойства диагоналей параллелограмма
- Точка пересечения диагоналей разделяет их пополам.
- Любая диагональ разделяет фигуру на два треугольника, равные друг другу.
- Сумма квадратов его диагоналей равняется сумме квадратов всех его сторон.
- Площадь фигуры находится путем умножения длины диагоналей на синус угла, расположенного между ними, разделённый на 1/2.
Видео:ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Как вычислить площадь параллелограмма?
Существует несколько вариантов нахождения площади:
- По основанию и высоте: S=a*h.
- Зная значение двух смежных сторон и угла между ними: S=a*b*sin(α)°.
- По длине диагоналей и углу между ними: S=1/2*d1*d2*sin α.
Разберем подробнее последнюю формулу площади на примере. Дан параллелограмм с диагоналями АС и BD. Точка пересечения — О. Угол пересечения диагоналей в точке O = 60°. Отрезки AO=6 см и OD=5 см Площадь находится по формуле:
Зная свойство деления диагоналей точкой пересечения пополам, получаем:
AC=AO*2=12 см и DB=OD*2=10 см
Подставляем полученные значения в формулу:
S=1/2 * 12*10*1/2√3=51,962 см 2
Видео:Вписанная и описанная окружности. ЗадачиСкачать
Как вписать параллелограмм в окружность?
Вписанный параллелограмм — это когда фигура находится внутри окружности.
Не каждый параллелограмм можно поместить внутрь окружности. Эту манипуляцию можно проделать с той фигурой, у которой два противоположных угла в сумме составляют 180 градусов.
Из этого можно прийти к выводу, что у вписанного в окружность параллелограмма все четыре угла равны 90°. Параллелограмм бывает трех видов: квадрат, ромб, прямоугольник. Следовательно вписать в окружность можно прямоугольник, квадрат.
- Начертить окружность.
- Найти ее центр, обозначить буквой O.
- Выбрать любую точку на окружности и назвать ее точкой A.
- Если вписываем квадрат, то нужно построить два диаметра с углом между ними в 90 градусов. Точки пересечения диагоналей с окружностью соединить прямыми линиями.
- Для прямоугольника нужно иметь значения угла между диагоналями или размеры сторон. Зная размеры сторон по теореме Пифагора, высчитываем угол между диагоналями. Проведя один диаметр, обозначить точки пересечения с окружностью. От точки O (центр окружности и середина диагонали) отмерить угол между диагоналями. Провести второй диаметр через центр и новую полученную точку. Соединить полученные точки прямыми.
Видео:Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Как вписать окружность в параллелограмм?
В окружность можно вписать параллелограмм при условии равнозначных сумм противолежащих сторон. Из трех вариантов параллелограмма сумма противоположных сторон одинакова только у ромба. Следовательно, если в параллелограмм вписана окружность, то этот параллелограмм является ромбом.
- Начертить ромб можно, зная длину минимум одной стороны и одного угла.
- Провести горизонтальную линию, равную длине стороны.
- Транспортиром отмерить известный угол и провести луч.
- На луче отмерить тот же самый размер стороны.
- Оставшиеся две стороны нарисовать параллельно имеющимся.
- Согласно свойству ромба и вписанной окружности, проводим две биссектрисы из смежных углов (они же диагонали в ромбе).
- Пересечение биссектрис отметить точкой О.
- Точка О будет центром окружности.
- Вписанная окружность должна касаться всех сторон параллелограмма. Следовательно, стороны ромба будут касательными к окружности.
- Касательные перпендикулярны радиусу, который проходит к точке касания. Таким образом, из центра окружности (точки О) надо опустить перпендикуляр к любой стороне ромба.
- Иголку циркуля поставить в точку О, а ножку — на точку касания перпендикуляра со стороной ромба.
- Начертить окружность.
- Правильно начерченная фигура будет соприкасаться со всеми сторонами ромба.
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Как начертить параллелограмм?
Рассмотрим схему построения каждого вида по отдельности.
Алгоритм построения квадрата
- Узнать размер одной стороны. Этого достаточно, так как все стороны в квадрате равны.
- Один из признаков квадрата — все углы равны 90 градусов.
- Чертим прямую, равную длине одной стороны.
- С каждой стороны проводим перпендикулярную линию.
- На перпендикулярах отмечаем нужную длину и ставим точку.
- Соединяем две точки, построенные на перпендикулярных прямых.
Построение ромба
- Начертить ромб можно, зная длину минимум одной стороны и одного угла.
- Провести горизонтальную линию, равную длине стороны.
- Транспортиром отмерить известный угол и провести луч.
- На луче отмерить тот же самый размер стороны.
- Оставшиеся две стороны нарисовать параллельно имеющимся.
Как построить прямоугольник
- Нужно знать значения длины и ширины.
- Начертить прямую, равную длине.
- Провести два перпендикуляра с обеих сторон отрезка.
- Отметить на перпендикулярных линиях отрезок равный ширине прямоугольника.
- Соединить полученные два отрезка.
- При правильном построении полученная линия должны быть перпендикулярна длине (первой начерченной линии).
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Трапеция — это параллелограмм?
Обе фигуры являются четырехугольниками с двумя противоположными сторонами, которые равны. Трапеция по определению имеет 2 непараллельные стороны. В параллелограмме все 4 стороны попарно параллельны.
Таким образом, трапеция не является параллелограммом.
Видео:Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
Средняя линия параллелограмма
Под этим термином понимается отрезок, соединяющий середины противоположных сторон параллелограмма.
Средняя линия всегда равна параллельной ей стороне
Свойства средней линии в параллелограмме:
- точка пересечения диагоналей является точкой пересечения средних линий;
- точка пересечения делит средние линии пополам;
- точка пересечения выступает центром симметрии параллелограмма.
Видео:Описанная и вписанная окружности треугольника - 7 класс геометрияСкачать
Параллелограмм, у которого все стороны равны
Все четыре стороны имеют равное значение в двух разновидностях фигуры — ромбе и квадрате.
Видео:ОПИСАННАЯ и ВПИСАННАЯ окружности. §21 геометрия 7 классСкачать
Ось симметрии параллелограмма
Под осью симметрии понимается прямая, разделяющая фигуру на две зеркально равные фигуры.
В прямоугольнике осью симметрии являются прямые, которые проходят через середину противоположной стороны.
В ромбе оси симметрии представляют собой его 2 диагонали.
Квадрат, объединяя в себе две предыдущие фигуры, имеет 4 оси симметрии: 2 диагонали и 2 средние линии.
📺 Видео
8 класс, 39 урок, Описанная окружностьСкачать
Задание 24 ОГЭ по математике #5Скачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
Тема 7. Вписанные и описанные окружности треугольникаСкачать