Восстановить окружность по 2 точкам

Как восстановить окружность по массиву точек?

Простой 1 комментарий

Восстановить окружность по 2 точкам

Для начала нужно определиться — окружность должна точно проходить через точки? Или, как на картинке, точки зашумлены?

Во втором случае возникает вопрос, а какая окружность будет для вас наилучшим приближением. Можно вводить разыне метрики ошибки. Например сумма квадратов разностей квадратов расстояний от центра до точек и квадрата радиуса. Или можно минимизировать максимальный такой квадрат разности.

Играясь с метрикой можно получить более простую или сложную задачу, но ответ может быть разным. Особенно в крайних случаях. Например. если почти все точки лежат на очень маленькой окружности, а одна точка где-то далеко-далеко. Одно решение будет взять окружность через все кроме одной далекой точки. Тут сумма квадратов ошибок будет маленькой. Другое решение будет окружностью, проходящей через центр мелкой окружности и дальнюю точку. Тут максимальная ошибка будет меньше.

Содержание
  1. Решение метрических задач в начертательной геометрии с примерами
  2. Решение метрических задач методами преобразовании проекций
  3. Четыре основных задачи преобразовании проекций
  4. Способ вращения
  5. Способ плоскопараллельного перемещения
  6. Способ замены плоскостей проекций
  7. Способ плоскопараллельного перемещения
  8. Способ замены плоскостей проекций
  9. Метрические задачи
  10. Определение расстояний между геометрическими объектами
  11. Перпендикулярность плоскостей
  12. Определение углов между прямой и плоскостью и между двумя плоскостями
  13. Примеры метрических задач
  14. Теорема о проекциях прямого угла
  15. Линии наибольшего наклона плоскости
  16. Перпендикулярность прямой и плоскости
  17. Взаимная перпендикулярность плоскостей
  18. Определение метрических задач
  19. Определение длины отрезка
  20. Определение площади треугольника
  21. Проецирование прямого угла
  22. Перпендикулярность прямых и плоскостей
  23. Перпендикулярность прямой и плоскости
  24. Расстояние от точки до плоскости
  25. Перпендикулярность плоскостей
  26. Определение натуральных величин геометрических элементов
  27. Определение расстояния между геометрическими элементами (образами)
  28. Определение углов наклона геометрических элементов к плоскостям проекций H и V
  29. Урок №12. Построение окружностей в Компас 3D. Окружности касательные к кривым, окружность по двум точкам.
  30. 💥 Видео

Видео:Определение центра дуги окружности, построение окружности по 3 точкамСкачать

Определение центра дуги окружности, построение окружности по 3 точкам

Решение метрических задач в начертательной геометрии с примерами

Содержание:

К метрическим задачам относятся задачи на определение натуральной величины отрезков, расстояний углов, площадей плоских фигур.

Определение натуральной величины отрезка и углов наклона к плоскостям проекций методом прямоугольною треугольника Натуральная величина отрезка равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка, а вторым — разность расстояний концов отрезка от той плоскости, на которой ведется построение. При этом угол между гипотенузой и катетом проекций является углом наклона отрезка к той плоскости, ряльной величины выполнено на горизонтальной проекции. Поэтому одним катетом прямоугольного треугольника, является горизонтальная проекцияВосстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Если необходимо определить угол наклона отрезка АВ к плоскости Восстановить окружность по 2 точкамто построение прямоугольного треугольника ведется на фронтальной проекции.

Видео:Построение окружности по трём точкам.Скачать

Построение окружности по трём точкам.

Решение метрических задач методами преобразовании проекций

Положении геометрических образов, при которых расстоянии и углы не искажаются на плоскостях проекций

Метрические характеристики объектов на чертежах не искажаются, если геометрические образы занимают частное положение относительно плоскостей проекций.

Приведем некоторые из них.

1. Прямая проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.2).

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам— угол наклона к плоскостиВосстановить окружность по 2 точкам

2. Расстояние от точки до прямой проецируется в натуральную величину, если прямая проецирующая (рисунок 3.3).

Восстановить окружность по 2 точкам

3. Расстояние между параллельными прямыми проецируется в натуральную величину, если прямые проецирующие (рисунок 3.4).

Восстановить окружность по 2 точкам

4. Расстояние между скрещивающимися прямыми проецируется в натуральную величину, если одна из прямых проецирующая (рисунок 3.5).

Восстановить окружность по 2 точкам

5. Угол между плоскостями (двугранный угол) проецируется в натуральную величину, если ребро угла проецирующее (рисунок 3.6).

Восстановить окружность по 2 точкам

6. Угол наклона плоскости к плоскости проекций проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.7) Восстановить окружность по 2 точкам

7. Расстояние от точки до плоскости проецируется в натуральную величину, если плоскость проецирующая (рисунок 3.8)

Восстановить окружность по 2 точкам

8. Любая плоская фигура проецируется в натуральную величину, если она параллельна плоскости проекций (рисунок 3.9а,б)

Восстановить окружность по 2 точкам

Таким образом, для решения метрических задач целесообразно данный объект привести в частное положение с тем, чтобы на одной из новых проекций получить более простое решение задачи.

Для такого перехода и служат способы преобразования проекций.

Существует несколько способов преобразовании проекций: способ вращения вокруг осей перпендикулярных плоскостям проекций, способ плоскопараллельного перемещения, способ замены плоскостей проекций и др.

Четыре основных задачи преобразовании проекций

Этими способами решаются четыре основные задачи:

  • Задача 1. Прямую общего положения преобразуем в линию уровня (одно преобразование).
  • Задача 2. Прямую общего положения преобразуем в проецирующую (два преобразования)
  • Задача 3. Плоскость общего положения преобразуем в проецирующую (одно преобразование)
  • Задача 4. Плоскость общего положения преобразуем в плоскость уровня (два преобразования)

Решение 1-ой и 2-ой задачи преобразовании проекций методом вращении, плоскопараллельного перемещении и замены плоскостей проекций

Способ вращения

Способ вращения заключается в том, что геометрические образы вращаются вокруг осей перпендикулярных плоскостям проекций до занятия ими какого-либо частного положения относительно плоскостей проекций. При этом одна проекция точки перемещается по окружности, вторая — но прямой параллельной оси проекций.

На рисунке 3.10 вокруг осиВосстановить окружность по 2 точкамвращаем отрезок ЛВ до положения параллельного плоскостиВосстановить окружность по 2 точкам(1 задача). Далее вращением вокруг осиВосстановить окружность по 2 точкамполученный отрезок до положения перпендикулярного плоскости Восстановить окружность по 2 точкамНа Восстановить окружность по 2 точкамотрезок с проецируется в точку Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения является разновидностью способа вращения (вращение без закрепленных осей), т.е. положение объекта можно преобразовывать путем перемещения его параллельно одной плоскости проекций, одновременно изменяя его положение относительно другой плоскости проекций до занятия им какого-либо частного положения.

На рисунке 3.11 сначала АВ переводим из общего положения в положение горизонтальное. При этом Восстановить окружность по 2 точкамдолжно быть равно по величина Восстановить окружность по 2 точкамнаходим в пересечении вертикальных линий связи и линий Восстановить окружность по 2 точкампараллельных оси Восстановить окружность по 2 точкам(1 задача). Далее отрезок Восстановить окружность по 2 точкамперемещаем до положения перпендикулярного оси Восстановить окружность по 2 точкамПри этом Восстановить окружность по 2 точкамНа фронтальной проекции отрезок с проецируется в точку Восстановить окружность по 2 точкам(2 задача).

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Способ замены плоскостей проекций

Сущность способа замены плоскостей проекций заключается в том, что старая система плоскостей проекций заменяется на новую, с таким расчетом, чтобы относительно новой системы плоскостей, геометрический образ занял какое-то частное положение. При этом нужно помнить, что линии связи будут перпендикулярны относительно новой оси проекций и расстояния от новой оси проекций до новой проекции точки равно расстоянию от старой проекции точки до старой оси.

На рисунке 3.12 произведена первая замена плоскость Восстановить окружность по 2 точкамзаменена на новую фронтальную плоскость Восстановить окружность по 2 точкампараллельную прямой АВ. При этом новая ось Восстановить окружность по 2 точкампроводится параллельно проекции Восстановить окружность по 2 точкамЛинии связи проводятся перпендикулярно оси Восстановить окружность по 2 точками на них от Восстановить окружность по 2 точкамоткладываются координаты z точек А и В (1 задача).

Восстановить окружность по 2 точкам

Далее прямую АВ преобразуем в проецирующую. Для этого проводим новую ось Восстановить окружность по 2 точкамперпендикулярно проекцииВосстановить окружность по 2 точкам. Т.к. Восстановить окружность по 2 точкампараллельна оси Восстановить окружность по 2 точкам, расстояние до проекций Восстановить окружность по 2 точкамбудет одинаковое и прямая спроецируется в точку Восстановить окружность по 2 точкам(2 задача)

Решение 3-ой и 4-ой задачи преобразовании проекций методом плоскопараллельного перемещения и замены плоскостей проекций

Так как метод вращения является более громоздким, рассмотрим решение 3-ей и 4-ой задачи преобразования методом плоскопараллельного перемещения и методом замены плоскостей проекций.

Способ плоскопараллельного перемещения

Восстановить окружность по 2 точкам

Для того чтобы плоскость из общего положения перевести в проецирующее, нужно иметь ввиду, что при этом ее горизонталь или фронталь должна быть перпендикулярна плоскости проекций. Поэтому на рисунке 3.13 проведена горизонталь Восстановить окружность по 2 точкамДалее Восстановить окружность по 2 точкамрасполагаем перпендикулярно оси Восстановить окружность по 2 точкамОткладываем на ней отрезок Восстановить окружность по 2 точками циркулем строим треугольник Восстановить окружность по 2 точкамравный по величине Восстановить окружность по 2 точкамНа фронтальной проекции треугольник проецируется в линию (3 задача).

Чтобы плоскость треугольника перевести в положение плоскости уровня, достаточно полученную фронтальную проекцию Восстановить окружность по 2 точкамрасположить параллельно оси Восстановить окружность по 2 точкампри этом на горизонтальной проекции треугольник проецируется в натуральную величину (4-я задача)

Способ замены плоскостей проекций

При решении задачи методом замены (рисунок 3.14) новую ось Восстановить окружность по 2 точкампроводим перпендикулярно горизонтали Восстановить окружность по 2 точкамтогда на новую фронтальную плоскость Восстановить окружность по 2 точкамтреугольник спроецируется в линию, т.е. станет перпендикулярным (3-я задача). Чтобы плоскость перевести в положение плоскости уровня, необходимо новую ось Восстановить окружность по 2 точкампровести параллельно плоскости Восстановить окружность по 2 точкамНа новую плоскость Восстановить окружность по 2 точкамтреугольник спроецируется в натуральную величину.

Восстановить окружность по 2 точкам

Для того, чтобы методами преобразования решить любую метрическую задачу, необходимо определить какую из четырех основных задач преобразования необходимо решать в каждом конкретном случае.

Видео:Построение окружности по трем точкамСкачать

Построение окружности по трем точкам

Метрические задачи

Метрические задачи — это задачи на определение линейных или угловых размеров геометрических объектов, а также расстояний и углов между ними.

Главным вопросом метрических задач является вопрос о построении перпендикуляра к прямой или плоскости. Построение взаимно перпендикулярных прямых было рассмотрено ранее.

Из элементарной геометрии известно, что прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, принадлежащим этой плоскости. В качестве этих пересекающихся прямых наиболее целесообразно использовать горизонталь и фронталь плоскости. Это объясняется тем, что только в этом случае прямой угол будет проецироваться в натуральную величину на соответствующие плоскости проекций. На рисунке 5.1 приведен пространственный чертеж, на котором из плоскости а (из точки А) восстановлен перпендикуляр АВ. Из приведенного изображения можно выяснить методику построения проекций перпендикуляра к плоскости: горизонтальная проекция перпендикуляра к плоскости проводится перпендикулярно горизонтальной проекции горизонтали или горизонтальному следу плоскости, а фронтальная проекция перпендикуляра проводится перпендикулярно фронтальной проекции фронтали или фронтальному следу плоскости. Таким образом, необходимо выполнить следующий алгоритм проведения проекций перпендикуляра к плоскости:

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Построение перпендикуляра к плоскость и восстановление перпендикуляра из плоскости называется прямой задачей, а построение плоскости, перпендикулярной к прямой — обратной задачей. Обе задачи решаются по одному и тому же вышеописанному алгоритму. При этом плоскость, перпендикулярную заданной прямой, можно задать следами или пересекающимися горизонталью и фронталью.

На рисунке 5.2 показано решение прямой (а) и обратной (б) задач. В прямой задаче из точки A треугольника AВС восстановлен перпендикуляр, в обратной задаче через точку К проведена плоскость, перпендикулярная прямой АВ. Плоскость задана пересекающимися горизонталью и фронталью.

Здесь же приведены примеры прямой и обратной задач, если плоскость задана следами. В прямой задаче (в) из точки Л построен перпендикуляр на плоскость, в обратной (г) — через точку К проведена плоскость перпендикулярно прямой АВ. Восстановить окружность по 2 точкам

Определение расстояний между геометрическими объектами

Среди этих задач можно выделить следующие задачи: расстояние от точки до плоскости, расстояние от точки до прямой, расстояние между двумя параллельными прямыми, расстояние между двумя скрещивающимися прямыми, расстояние между двумя параллельными плоскостями и другие. В общем случае все задачи сводятся к определению расстояний между двумя точками.

Чтобы определить расстояние от точки до плоскости, необходимо выполнить ряд логических действий:

  1. Из точки опустить перпендикуляр на заданную плоскость;
  2. Найти точку встречи перпендикуляра с плоскостью;
  3. Определить НВ расстояния между заданной и найденной точками.

Задача на определение расстояния от точки до прямой решается по следующему плану:

  1. Через точку к провести плоскость, перпендикулярную заданной прямой;
  2. Найти точку встречи М заданной прямой с проведенной плоскостью;
  3. Соединить полученные точки (это будет перпендикуляр из точки на прямую);
  4. Определить НВ перпендикуляра.

Пространственная модель решения второй задачи представлена на рисунке 5.3. Рассмотренная задача относится также к задачам на перпендикулярность двух прямых.

Восстановить окружность по 2 точкам

Другие упомянутые задачи на определение расстояний легче решаются методами преобразования эпюра, которые будут рассмотрены в последующих разделах.

Перпендикулярность плоскостей

Плоскость перпендикулярна другой плоскости, если она содержит прямую, перпендикулярную другой плоскости (рисунок 5.4а). Таким образом, для того, чтобы провести плоскость, перпендикулярную другой, необходимо сначала провести перпендикуляр к заданной плоскости, а затем через него провести искомую плоскость. На рисунке 5.46 представлена задача: через точку К провести плоскость, перпендикулярную плоскости треугольника AВС. Искомая плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна заданной плоскости.

Восстановить окружность по 2 точкам

Если две плоскости являются одноименными плоскостями частного положения (например, горизонтально- или фронтально-проецирующими), то при перпендикулярности плоскостей их собирательные следы будут перпендикулярны друг другу (рисунок 5.4в,г).

Если плоскости являются плоскостями общего положения, то при их перпендикулярности одноименные следы не будут взаимно перпендикулярны. Другими словами, перпендикулярность одноименных следов плоскостей общего положения не является достаточным условием для перпендикулярности самих плоскостей.

Определение углов между прямой и плоскостью и между двумя плоскостями

Определение углов между геометрическими объектами является трудоемкой задачей, если её решать традиционными геометрическими способами. Так, например, задачу на определение угла между прямой и плоскостью (рисунок 5.5) можно решить способом, алгоритм которого содержит следующие операции:

  1. Определить точку встречи прямой АВ с плоскостью а;
  2. Из точки В построить перпендикуляр на плоскость;
  3. Найти точку встречи перпендикуляра с плоскостью;
  4. Точки К и N соединить и определить НВ угла BKN.

Восстановить окружность по 2 точкам

Однако задача может быть значительно упрощена, если использовать способ решения задачи с помощью дополнительного угла. Дополнительным углом назовем угол между заданной прямой АВ и перпендикуляром BN, обозначенный через Восстановить окружность по 2 точкамИз приведенного рисунка видно, что, если из точки В прямой построить на плоскость перпендикуляр, определить НВ дополнительного угла Восстановить окружность по 2 точкамто искомый угол определится по формуле:

Восстановить окружность по 2 точкам

которую можно решить графически, достроив угол Восстановить окружность по 2 точкамдо 90°.

То же самое можно сказать о задаче на определение двугранного угла, то есть угла между двумя плоскостями (рисунок 5.66). Первый способ (геометрический) достаточно трудоемок. Он заключается в пересечении угла вспомогательной плоскостью а, перпендикулярной ребру АВ, построении линий пересечения KN и KL и определении натуральной величины угла NKL.

Восстановить окружность по 2 точкам

С помощью дополнительного угла задача решается следующим образом. В растворе двугранного угла (рисунок 5.6в) берут любую точку К и строят из неё перпендикуляры на обе плоскости двугранного угла, которые образуют дополнительный угол Восстановить окружность по 2 точкамДалее определяют НВ дополнительного угла и дополняют его (графически) до 180 градусов, исходя из формулы:

Восстановить окружность по 2 точкам

Дополненный угол будет искомым.

Натуральную величину дополнительного угла Восстановить окружность по 2 точкамв обеих задачах наиболее целесообразно определять методом вращения вокруг горизонтали или фронтали, который будет изложен в последующих темах.

Пример: Из любой вершины треугольника АВС восстановить перпендикуляр длиной 40 мм.

Восстановить окружность по 2 точкам

Решение: Сначала необходимо в плоскости треугольника АВС провести горизонталь и фронталь для того, чтобы построить проекции восстановленного перпендикуляра. Далее из точки С проводим проекции перпендикуляра согласно рассмотренному выше алгоритму о перпендикуляре к плоскости. Для того, чтобы отложить 40 мм, необходимо определить НВ ограниченного отрезка перпендикуляра CF (точку F берем произвольно). НВ отрезка CF определяем методом прямоугольного треугольника на горизонтальной проекции CF. Полученную точку К возвращаем на проекции по теореме Фалеса. Получаем проекции перпендикуляра длиной 40 мм (рисунок. 5.7).

Пример: Найти расстояние от точки А до плоскости, заданной следами

Восстановить окружность по 2 точкам

Решение: Из точки А строим перпендикуляр на заданную плоскость. Проекции перпендикуляра проводим перпендикулярно следам. Далее находим точку встречи перпендикуляра с заданной плоскостью с помощью вспомогательной фронтально-проецирующей плоскости Восстановить окружность по 2 точкамНаходим линию пересечения плоскостей Восстановить окружность по 2 точкам(линия 1-2) и точку встречи Восстановить окружность по 2 точкамв месте пересечения горизонтальной проекции перпендикуляра с линией 1-2. Методом прямоугольного треугольника определяем НВ расстояния АК (рисунок 5.8).

Пример: Определить расстояние от точки К до прямой AВ.

Восстановить окружность по 2 точкам

Решение: Через точку К проводим плоскость, перпендикулярную заданной прямой. Плоскость задаем пересекающимися горизонталью и фронталью. Их проекции проводим согласно алгоритму о перпендикуляре к плоскости (обратная задача). Далее находим точку встречи прямой с проведенной плоскостью (точка М). Определяем натуральную величину КМ методом прямоугольного треугольника (рисунок 5.9).

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Примеры метрических задач

Задачи, в которых определяются различные геометрические величины -расстояния между объектами, длины отрезков, углы, площади и т.д. называются метрическими. Решение многих метрических задач, например задач на определение кратчайших расстояний, требует построения перпендикулярных прямых и плоскостей.

Перпендикулярность является частным случаем пересечения прямых, прямой и плоскости или двух плоскостей. Необходимо установить соотношения, по которым строятся проекции перпендикулярных прямых и плоскостей.

Теорема о проекциях прямого угла

Прямой угол проецируется на плоскость без искажения, если одна из его сторон параллельна этой плоскости (рис. 10.1).

Восстановить окружность по 2 точкам

Рис. 10.1. Теорема о проекциях прямого угла

Дано :Восстановить окружность по 2 точкамBAC = 90°; AB || П’

Доказать, что C’A’Восстановить окружность по 2 точкамA’B’

Доказательство: если AB||П’, то A’B’||AB, но AA’Восстановить окружность по 2 точкамП’^AA’Восстановить окружность по 2 точкамA’B’ значит ABВосстановить окружность по 2 точкамAA,AB Восстановить окружность по 2 точкамплоскости CAA’C’, тогда и A’B’ Восстановить окружность по 2 точкамCAA’C’. Следовательно,CA’Восстановить окружность по 2 точкамA’B’.

На основании этой теоремы две взаимно перпендикулярные прямые (пересекающиеся или скрещивающиеся) проецируются на П1 в виде взаимно перпендикулярных прямых, если одна из них горизонталь, на П2 — если одна из них фронталь (рис. 10.2,а).

Условие перпендикулярности скрещивающихся прямых (рис. 10.2,б) сводятся к условиям перпендикулярности пересекающихся прямых, поведенных через произвольную точку и соответственно параллельных скрещивающимся прямым. Таким образом, понятие перпендикулярности можно отнести как к пересекающимся, так и к скрещивающимся прямым.

Восстановить окружность по 2 точкам

Рис. 10.2. Перпендикулярные прямые:
а -пересекающиеся a1 Восстановить окружность по 2 точкамh1 Восстановить окружность по 2 точкамa Восстановить окружность по 2 точкамh ;
б -скрещивающиеся b2 Восстановить окружность по 2 точкамВосстановить окружность по 2 точкам2 Восстановить окружность по 2 точкамb Восстановить окружность по 2 точкамВосстановить окружность по 2 точкам

Линии наибольшего наклона плоскости

Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, называются линиями наибольшего наклона к соответствующей плоскости проекций (рис. 10.3). Так, прямая, лежащая в плоскости и перпендикулярная горизонтали плоскости, называется линией наибольшего наклона к горизонтальной плоскости проекций, а прямая, перпендикулярная фронтали — линией наибольшего наклона к фронтальной плоскости проекций.

Угол между линией наибольшего наклона и ее проекцией на соответствующую плоскость равен углу наклона плоскости к плоскости проекций (см. рис. 9.15).
Восстановить окружность по 2 точкам

Рис. 10.3. Линия наибольшего наклона плоскости а к П1:
а — плоскость общего положения; h ∈α — горизонталь плоскости а; AB Восстановить окружность по 2 точкамh — линия наибольшего наклона;
φ = Восстановить окружность по 2 точкамAB, AB 1 — угол наклона плоскости а к П1

Перпендикулярность прямой и плоскости

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым этой плоскости. На основании теоремы о проекциях прямого угла можно получить условие перпендикулярности прямой общего положения и плоскости общего положения:
Если прямая а перпендикулярна плоскости α(ABC), то ее горизонтальная проекция перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция — фронтальной проекции фронтали плоскости.

Например, при построении прямой а, перпендикулярной плоскости α(ABC) (рис. 10.4,а), в плоскости строятся линии уровня — горизонталь и фронталь, затем через произвольную точку в плоскости, в данном случае точку K(h×Восстановить окружность по 2 точкам), строится прямая, горизонтальная проекция которой перпендикулярна горизонтальной проекции горизонтали плоскости α(ABC), а фронтальная проекция — фронтальной проекции фронтали плоскости.

Восстановить окружность по 2 точкам

Рис. 10.4. Перпендикулярность прямой и плоскости:

а -построение прямой, перпендикулярной плоскости: Восстановить окружность по 2 точкам

б -построение плоскости, перпендикулярной прямой: Восстановить окружность по 2 точкам

Аналогично решается задача о построении плоскости, перпендикулярной прямой общего положения (рис. 10.4,б)

Если плоскость проецирующая, проекции линий уровня совпадают со следом плоскости, перпендикулярность устанавливается по отношению к следу плоскости. Горизонтальная проекция перпендикуляра к горизонтально-проецирующей плоскости строится перпендикулярно горизонтальному следу плоскости (рис. 10.5,а). Прямая, перпендикулярная горизонтально-проецирующей плоскости, занимает положение горизонтальной линии уровня.
Аналогично, фронтальная проекция перпендикуляра к фронтально-проецирующей плоскости строится перпендикулярно фронтальному следу плоскости (рис. 10.5,б). Прямая, перпендикулярная фронтально-проецирующей плоскости, занимает положение фронтали.

Восстановить окружность по 2 точкам

Рис. 10.5. Перпендикулярность прямой и проецирующей плоскости:
а -построение прямой, перпендикулярной плоскости;
б -построение плоскости, перпендикулярной прямой

Взаимная перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Таким образом, построение взаимно перпендикулярных плоскостей сводится к построению перпендикулярных прямой и плоскости. Например, чтобы через произвольную точку А провести плоскость, перпендикулярную плоскости a(Восстановить окружность по 2 точкам× h) (рис. 10.6), достаточно построить прямую n,перпендикулярную плоскости α(Восстановить окружность по 2 точкам×h): n1Восстановить окружность по 2 точкамh1; n2Восстановить окружность по 2 точкамВосстановить окружность по 2 точкам2. Вторая прямая m, определяющая искомую плоскость, может быть задана произвольно — как пересекающая прямую n или параллельная ей.

Восстановить окружность по 2 точкам

Рис. 10.6. Перпендикулярность двух плоскостей

Дано: α(h × Восстановить окружность по 2 точкам ) ; A (A1, A2).

Построить: A ∈ β Восстановить окружность по 2 точкамα .

Восстановить окружность по 2 точкам

Видео:Математика. Центр окружности по трем точкамСкачать

Математика. Центр окружности по трем точкам

Определение метрических задач

Традиционно задачи, связанные с измерением длин, углов, площадей и объемов относят к метрическим. В основе решения этих задач лежит определение длины отрезка и, как производной от этого, площади плоской фигуры.

Определение длины отрезка

Одним из наиболее распространенных методов (рисунок 5.1) является метод прямоугольного треугольника (так его называют в начертательной геометрии) или метод ортогональных дополнений (название, принятое в линейной алгебре).
Восстановить окружность по 2 точкам

Идея метода базируется на следующем. Истинная величина отрезка AВ является гипотенузой прямоугольного треугольника, один из катетов которого, является проекцией отрезка AВ на плоскость проекции Восстановить окружность по 2 точкама второй катет -разница координат Восстановить окружность по 2 точкамконцов отрезка для оси, отсутствующей в рассматриваемой плоскости проекции (ортогональное дополнение). Угол между проекцией и гипотенузой этого треугольника (а) определяет наклон прямой к соответствующей плоскости проекции.

На комплексном чертеже возможно решение как на плоскости Восстановить окружность по 2 точкамтак и на плоскости Восстановить окружность по 2 точкамПри правильных построениях Восстановить окружность по 2 точкам. Углы а и Восстановить окружность по 2 точкам-углы наклона отрезка прямой АВ к плоскости Восстановить окружность по 2 точкамсоответственно.

Определение площади треугольника

Определение площади треугольника и величины плоского угла можно свести к известной задаче построения треугольника по трем сторонам.

Для этого достаточно, используя рассмотренный выше способ прямоугольного треугольника, найти по порядку истинные величины сторон Восстановить окружность по 2 точкам(в соответствии с рисунком 5.2), а затем на свободном месте построить треугольник по трем сторонам.

Восстановить окружность по 2 точкам
Величина плоского угла между двумя любыми сторонами этой фигуры может быть измерена на истинной величине треугольника.

Проецирование прямого угла

Решение многих задач Начертательной геометрии связано с необходимостью построения на чертеже взаимно перпендикулярных прямых и плоскостей. Базой для этого служит умение строить прямые углы на комплексном чертеже.

Восстановить окружность по 2 точкам
Известная в теории чертежа теорема (приведем ее без доказательства) утверждает, что прямой угол (в соответствии с рисунком 5.3) проецируется на

соответствующую плоскость проекций вез искажения, если одна из его сторон параллельна этой плоскости проекций, а вторая — ей не перпендикулярна.

Перпендикулярность прямых и плоскостей

Выше уже отмечалось, что в трехмерном Евклидовом пространстве отсутствует полная параллельность, то же самое можно сказать и о перпендикулярности. Понятие перпендикулярности так же, как и параллельности, вводится через определение.

Перпендикулярность прямой и плоскости

Считают, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся (любым) прямым этой плоскости.

При решении задачи возможны два варианта: проведение перпендикулярной прямой к плоскости из внешней точки и из точки, лежащей в плоскости.
Рассмотрим возможность проведения перпендикуляра из точки К, лежащей в плоскости общего положения Р, заданной следами (рисунок 5.4).

Восстановить окружность по 2 точкам
Рисунок 5.4 — Перпендикулярность прямой и плоскости

В плоскости Р (через точку К) проводятся горизонталь h и фронталь f. Прямые, перпендикулярные соответствующим проекциям линий уровня Восстановить окружность по 2 точкамв соответствии с теоремой о проецировании прямого угла и данным выше определением, могут быть приняты за проекции прямой Восстановить окружность по 2 точкам.

В том случае, когда точка К не лежит в плоскости Р, решение задачи аналогично (рисунок 5.5).

Поскольку положение точки пересечения искомого перпендикуляра не определено, решение соответствует следующей схеме:

а) в плоскости проводятся горизонталь h (через точку В) и фронталь f (через точку A), в случае задания плоскости следами за фронталь и горизонталь принимаются соответствующие следы плоскости Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Рисунок 5.5 — Перпендикуляр к плоскости

б) из внешней точки К к соответствующим проекциям линий уровня (следам) проводятся перпендикулярные прямыеВосстановить окружность по 2 точкам— Линия t принимается за перпендикуляр, опущенный из точки К к плоскости Р;

в) определяется точка S пересечения этого перпендикуляра t и плоскости.

Расстояние от точки до плоскости

Восстановить окружность по 2 точкам
Рисунок 5.6 — Расстояние от точки до плоскости

Задачу на определение расстояние от точки до плоскости (рисунок 5.6) можно свести к решению уже известных задач на построение перпендикуляра к плоскости (рисунок 5.5) и определения натуральной величины отрезка прямой (рисунок 5.1)

Перпендикулярность плоскостей

Считают, что две плоскости взаимно перпендикулярны, если одна из них проходит через прямую, перпендикулярную другой плоскости.

Задача может ставиться, как проведение плоскости, перпендикулярной заданной, проходящей через точку или прямую.

При проведении искомой плоскости через точку, как и в предыдущем случае, возможны два варианта проведения плоскости перпендикулярной заданной: через точку, лежащую в плоскости и через точку вне ее (рисунок 5.7).

Точно такой же вариант возникает и при проведении перпендикулярной плоскости через прямую (лежащую в исходной плоскости или не лежащую).

Рассмотрим вариант построения плоскости, проходящей через точку. Пусть точка А лежит в плоскости Р. Линии Восстановить окружность по 2 точкамперпендикулярные соответствующим проекциям линий уровня (следам), определят перпендикуляр t к плоскости Р.

Восстановить окружность по 2 точкам
Рисунок 5.7 — Перпендикулярность плоскостей
Проведение через точку А произвольной прямой s позволяет определить плоскость Q, которая будет перпендикулярна плоскости Р.

Если точка А лежит вне плоскости Р, то решение аналогично. Проведение через точку А перпендикуляра t и произвольной прямой s определит плоскость Q, которая также, по определению, будет перпендикулярна плоскости Р.

Решение задачи на проведение плоскости через прямую аналогично решению задачи по проведению плоскости через точку. Достаточно вместо произвольной прямой s использовать заданную прямую АВ. И тогда, в соответствии с рисунком 5.8, задача сведется к проведению перпендикуляра t к плоскости Р (из точки, лежащей в плоскости или лежащей вне ее).
Восстановить окружность по 2 точкам

Рисунок 5.8 — Перпендикулярность плоскостей

Определение натуральных величин геометрических элементов

1. Определить натуральную величину отрезка общего положения:

  • способом прямоугольного треугольника;
  • способом замены плоскостей проекций преобразовать в прямую уровня;
  • способом вращения вокруг проецирующей оси преобразовать в прямую уровня.

2. Определить натуральную величину плоскости общего положения (замкнутого отсека):

  • способом замены плоскостей проекций преобразовать в плоскость уровня;
  • способом вращения вокруг линии уровня преобразовать в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать в плоскость уровня.

Определение расстояния между геометрическими элементами (образами)

1. Определить расстояние от точки до прямой общего положения:

  • способом замены плоскостей проекций преобразовать плоскость, заданную прямой и точкой, в плоскость уровня (задачи 3 и 4 преобразования; прямую и точку рассматривать как плоскость);
  • способом замены плоскостей проекций преобразовать прямую общего положения в проецирующую прямую (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную прямой и точкой, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить через заданную точку плоскость, перпендикулярную к прямой, и определить точку пересечения последней с плоскостью.

2. Определить расстояние между параллельными прямыми:

  • способом замены плоскостей проекций преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня (задачи 3 и 4 преобразования);
  • способом замены плоскостей проекций преобразовать две параллельные общего положения в проецирующие прямые (задачи 1 и 2 преобразования);
  • способом вращения вокруг линии уровня преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня, ограничив ее замкнутым отсеком;
  • способом плоскопараллельного перемещения преобразовать плоскость, заданную параллельными прямыми, в плоскость уровня;
  • способом задания плоскости, перпендикулярной к прямой (3-й тип задач), построить плоскость через любую точку, принадлежащую одной из прямых, перпендикулярную ко второй прямой, и определить точку пересечения этой плоскости со второй прямой.

3. Определить расстояние между скрещивающимися прямыми, преобразовав одну из прямых в проецирующую (задачи 1 и 2 преобразования).

4. Определить расстояние от точки до плоскости:

  • по теме «Перпендикулярность» – провести перпендикуляр к плоскости, построить точку пересечения этого перпендикуляра с заданной плоскостью и найти любым способом натуральную величину построенного отрезка (см. пункт 1);
  • способом замены плоскостей проекций преобразовать плоскость общего положения в плоскость проецирующую.

5. Определить расстояние от точки до поверхности вращения:

  • способом замены плоскостей проекций преобразовать плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня (задача 4 преобразования);
  • способом вращения вокруг проецирующей оси повернуть плоскость, проведенную через точку и ось вращения поверхности, в плоскость уровня.

Определение углов наклона геометрических элементов к плоскостям проекций H и V

1. Определить углы наклона прямой общего положения к плоскостям проекций H и V:

  • способом прямоугольного треугольника построить на двух проекциях натуральные величины отрезка и определить углы наклона прямой;
  • способом замены плоскостей проекций преобразовать прямую общего положения в горизонтальную, а затем во фронтальную прямую (задача 1 преобразования);
  • способом вращения вокруг соответствующей проецирующей оси преобразовать прямую общего положения в горизонтальную и во фронтальную прямые.

2. Определить угол наклона прямой к заданной плоскости общего положения:

  • из любой точки прямой опустить перпендикуляр к плоскости;
  • способом вращения вокруг линии уровня преобразовать построенную плоскость, заданную прямой и перпендикуляром, в плоскость уровня;
  • искомый угол будет дополнять построенный угол до 90°.

3. Определить величину двухгранного угла, если на чертеже есть линии пересечения плоскостей, образующих двухгранный угол (ребро):

  • способом замены плоскостей проекций преобразовать ребро двухгранного угла в проецирующую прямую (задачи 1 и 2 преобразования).

4. Определить угол между двумя плоскостями общего положения, если на чертеже нет линии пересечения заданных плоскостей (ребра):

  • задача решается косвенным путем, для чего из любой точки пространства следует опустить перпендикуляры к заданным плоскостям, которые, в свою очередь, задают вспомогательную плоскость, перпендикулярную к этим плоскостям;
  • эту вспомогательную плоскость способом вращения вокруг линии уровня следует преобразовать в плоскость уровня, определив угол между перпендикулярами (преобразование вспомогательной плоскости в плоскость уровня возможно и другими способами – ее плоскопараллельным перемещением или заменой плоскостей проекций);
  • искомый угол будет дополнять построенный угол до 180° (углом между плоскостями считают угол острый).

Структуризация материала тринадцатой лекции в рассмотренном объеме схематически представлена на рис. 13.1 (лист 1). На последующих листах 2–7 компактно приведены иллюстрации к этой схеме для визуального повторения изученного материала при его повторении (рис. 13.2–13.7).

Метрические задачи:

Восстановить окружность по 2 точкам

Определение натуральной величины геометрических элементов:

1. Определение длины отрезка

Способ прямоугольного треугольника

Восстановить окружность по 2 точкам

Способ замены плоскостей проекций (задача 1)

Восстановить окружность по 2 точкам

Способ вращения вокруг проецирующей оси

Восстановить окружность по 2 точкам

2. Определение площади замкнутого отсека

Способ замены плоскостей проекций (задачи 3 и 4)

Восстановить окружность по 2 точкам

Способ вращения вокруг прямой уровня (горизонтали)

Восстановить окружность по 2 точкам

Способ вращения вокруг проецирующей оси i(i Восстановить окружность по 2 точкамV)

Восстановить окружность по 2 точкам

Способ плоско-параллельного перемещения (переноса)

Восстановить окружность по 2 точкам

Определение расстояний:

1. Расстояние между точками — определяется величиной отрезка, соединяющего эти точки

2. Расстояние от точки до прямой — определяется величиной перпендикуляра, опущенного из точки к прямой

а. Прямой путь (перпендикулярность)

б. Способ замены плоскостей проекций: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис. 13.2, г)

в. Способ вращения вокруг прямой уровня: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, д)

г. Способ плоскопараллельного переноса: определить натуральную величину плоскости, которую определяют точка и прямая (см.рис.13.2, ж)

Восстановить окружность по 2 точкам

3. Расстояние между параллельными прямыми — определяется величиной перпендикуляра, проведённого из произвольной точки одной прямой к другой прямой

а. Способ замены плоскостей проекции (рассматриваем две прямые) — задачи 1 и 2 (преобразовать прямые общего положения AB и CD в проецирующие)

б. Способ замены плоскостей проекции (рассматриваем плоскость, которую определяют параллельные прямые) — задачи 3 и 4 (определить натуральную величину плоскости ? (AB//СВ))

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

4. Расстояние между скрещивающимися прямыми — определяется величиной перпендикуляра, проведённого от одной из прямых, преобразованной в точку, к другой прямой (задачи 1 и 2 замены плоскостей проекции).

Способ замены плоскостей проекций — задачи 1 и 2

Восстановить окружность по 2 точкам

5. Расстояние от точки до плоскости — определяется величиной перпендикуляра, проведённого из точки на плоскость до точки его пересечения с этой плоскостью.

а. Прямой путь (перпендикулярность)

Восстановить окружность по 2 точкам

б. Способ замены плоскостей проекций (плоскость преобразовать в проецирующую — задача 3)

Восстановить окружность по 2 точкам

6. Расстояние между прямой и параллельной ей плоскостью — определяется величиной перпендикуляра, проведённого из произвольной точки на прямой к плоскости.

7. Расстояние между параллельными плоскостями — определяется величиной отрезка перпендикуляра, опущенного из точки одной плоскости на другую плоскость (до точки пересечения с другой плоскостью).

8. Расстояние от точки до поверхности

a. Cпособ вращения вокруг проецирующей оси

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

б. Способ замены плоскостей проекции

Восстановить окружность по 2 точкам

Восстановить окружность по 2 точкам

Определение величин углов:

1. Угол φ между скрещивающимися прямыми — определяется плоским углом, образованным двумя пересекающимися прямыми, проведёнными из произвольной точки пространства параллельно скрещивающимся прямым (рис. 13.6, а)

Способ вращения вокруг линии уровня

Дано:
а и b — скрещивающиеся прямые
Требуется:

φ — ?

Решение:
1.
Восстановить окружность по 2 точкам
2.φ — вращением вокруг фронтали, проведённой в построенной плоскости α(dс)

Восстановить окружность по 2 точкам

2. Угол φ между прямой и плоскостью — определяется углом между прямой и её проекцией на эту плоскость.

Дано:
α(h ∩ f);
AB — прямая общего положения
Требуется:
φ — ?

Восстановить окружность по 2 точкам

Решение:
1. l Восстановить окружность по 2 точкам α(h ∩ f);
lВосстановить окружность по 2 точкам» Восстановить окружность по 2 точкамf»;
lВосстановить окружность по 2 точкам Восстановить окружность по 2 точкамh’;
2. ∠φ — вращением вокруг фронтали, проведённой в построенной плоскости β(AB∩l)

3. Угол φ между плоскостями α и β — определяется линейным углом, образованным двумя прямыми, по которым некоторая плоскость γ, перпендикулярная плоскостям (или их ребру), пересекает эти плоскости (углом между плоскостями считают острый угол).

а. Если на чертеже нет ребра (линии пересечения заданных плоскостей) — угол φ определяется способом вращения вокруг линии уровня (рис. а)

Восстановить окружность по 2 точкам

Дано:
(m // h); (а
b).
Требуется:
φ — ?
Решение:
1. провести в заданной плоскости фронтали и горизонтали;

2. из произвольной точки пространства D (D’, D») провести перпендикуляры l1 и l2 к заданными плоскостям, которые определяют плоскость γ(l1 l2);
3.
φ — вращением вокруг горизонтали h3, проведённой в построенной плоскости γ(l1 l2).

Восстановить окружность по 2 точкам

б. Если на чертеже есть ребро (линия пересечения заданных плоскостей) — угол φ определяется способом замены плоскостей проекций (задачи 1 и 2, рис. б)

Восстановить окружность по 2 точкам

ребро АВ двугранного угла преобразовать двумя заменами в проецирующую прямую.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью
  • Пересечение поверхности плоскостью и прямой
  • Развертки поверхностей
  • Способы преобразования проекций
  • Взаимное положение прямой и плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:КОМПАС 3D - [Окружность по двум точкам]Скачать

КОМПАС 3D - [Окружность по двум точкам]

Урок №12. Построение окружностей в Компас 3D. Окружности касательные к кривым, окружность по двум точкам.

Программа “Компас 3D” располагает несколькими способами, позволяющими построить касательную окружность: окружность касательную к одной кривой, к двум кривым, или же окружность касательная к трём кривым.

Для построения окружности касательную к кривой, вам нужно нажать кнопку «Окружность касательная к 1 кривой» в компактном меню, либо же выбрать в меню сверху следующие команды: «Инструменты» — «Геометрия» — «Окружности» — «Окружность касательная к 1 кривой».

Восстановить окружность по 2 точкам

С помощью курсора мыши вам нужно сначала указать кривую, через которую будет проложена окружность, а далее задать две точки окружности последствием ввода координатов точек в свойственной панели.

Восстановить окружность по 2 точкам

Экран высветит все возможные фантомные варианты окружности. С помощью курсора вам нужно будет выбрать необходимые вам и зафиксировать их, нажав на кнопку «Создать объект». Построение завершается с помощью применения опции «Прервать команду».

Восстановить окружность по 2 точкам

Перед заданием второй точки, вам предоставляется возможность ввода значения радиуса или диаметра в собственные поля в свойственной панели. Возможность построения такой окружности не всегда предоставлена, так как она зависит от заданных радиусов и диаметров. О том, что построение невозможно, вас известит исчезновение фантомного варианта после того, как вы введёте значение радиуса.

Если вы хотите задать точку центра окружности, её координаты также вводятся на панели свойств.

Восстановить окружность по 2 точкам

Для того, чтобы построить окружность, касательную двух кривых, нужно нажать кнопку «Окружность касательная к 2 кривым» в компактном меню, либо же выбрать в меню сверху соответствующие команды «Инструменты» — «Геометрия» — «Окружности» — «Окружность касательная к 2 кривым».

Восстановить окружность по 2 точкам

С помощью курсора вам нужно указать объекты, к которым будет прилегать окружность. Экран отобразит фантомные варианты построения.

Восстановить окружность по 2 точкам

Если вы хотите указать координаты точки, которая принадлежит окружности, она задаётся с помощью курсора либо введением координатов в свойственной панели, где также можно задать значение радиуса либо значение диаметра. Для того, чтобы завершить построение, вам нужно выбрать необходимый вариант построения и последовательно нажать команды «Создать объект» и «Прервать команду».

Восстановить окружность по 2 точкам

Для того, чтобы построить окружность, которая будет касаться трёх кривых, вам нужно нажать команду «Окружность касательная к 3 кривым» в компактном меню, либо же указать в меню сверху соответствующие команды «Инструменты» — «Геометрия» — «Окружности» — «Окружность касательная к 3 кривым».

Восстановить окружность по 2 точкам

Метод постройки аналогичен выше описанным, поэтому вы можете выполнить их самостоятельно, доведя до результата, показанного на картинке.

Восстановить окружность по 2 точкам

Для построения окружности с указанием двух точек, вам нужно выбрать «Окружность по 2 точкам» в компактном меню либо же указать в меню сверху следующие команды «Инструменты» — «Геометрия» — «Окружности» — «Окружность по 2 точкам».

Восстановить окружность по 2 точкам

Для начала нужно задать первую точку окружности, далее задать значения диаметра либо радиуса в свойственной панели и указать вторую точку с помощью курсора.

Восстановить окружность по 2 точкам

Для того, чтобы завершить построение, нужно нажать кнопку «Прервать команду».

Восстановить окружность по 2 точкам

Диаметр или радиус не обязательны к указанию, так как в данном случае программа определит их самостоятельно.

Нами были рассмотрены все возможности построения окружностей в программе “Компас 3D”. Далее мы займёмся построением дуг окружностей.

💥 Видео

Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать

Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точек

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Уравнение окружности (1)Скачать

Уравнение окружности (1)

Как найти центр окружности по трём точкамСкачать

Как найти центр окружности по трём точкам

Как найти центр круга с помощью подручных средств? ЛЕГКО.Скачать

Как найти центр круга с помощью подручных средств? ЛЕГКО.

Тригонометрическая окружность для непонимающихСкачать

Тригонометрическая окружность для непонимающих

Центр кругаСкачать

Центр круга

Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

1 2 4 сопряжение окружностейСкачать

1 2 4  сопряжение окружностей

Математика это не ИсламСкачать

Математика это не Ислам

КОМПАС 3D - [Окружность по трём точкам]Скачать

КОМПАС 3D - [Окружность по трём точкам]

Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей
Поделиться или сохранить к себе: