Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанные окружности

Теорема 1 . В любом треугольнике биссектрисы двух внешних углов и биссектриса внутреннего угла, не смежного с ними, пересекаются в одной точке.

Доказательство . Рассмотрим произвольный треугольник ABC и продолжим, например, стороны BA и BC за точки A и C соответственно (рис.1).

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Проведём биссектрисы углов DAC и ECA , которые являются внешними углами треугольника ABC . Обозначим точку пересечения этих биссектрис буквой O . Докажем, что точка O лежит на биссектрисе угла ABC , который является внутренним углом треугольника ABC , не смежным с внешними углами DAC и ECA . С этой целью опустим из точки O перпендикуляры OF , OG и OH на прямые AB , AC и BC соответственно. Поскольку AO – биссектриса угла DAC , то справедливо равенство:

Следовательно, справедливо равенство

Замечание 1 . В ходе доказательства теоремы 1 мы установили, что справедливы равенства

откуда вытекает, что точки F , G и H лежат на одной окружности с центром в точке O .

Определение . Окружность называют окружностью, вневписанной в треугольник , или вневписанной окружностью, если она касается касается одной стороны треугольника и продолжений двух других сторон (рис.2).

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Замечание 2 . У каждого треугольника существуют три вневписанных окружности. На рисунке 2 изображена одна из них.

Замечание 3 . Центр вневписанной окружности, изображенной на рисунке 2, лежит на биссектрисе угла B , а окружность касается стороны b . Для удобства обозначений и терминологии будем называть эту окружность вневписанной окружностью, касающейся стороны b , и обозначать её радиус символом rb .

Теорема 2 . Пусть вневписанная окружность касается стороны AC треугольника ABC . Тогда отрезки касательных касательных от вершины B до точек касания с вневписанной окружностью равны полупериметру треугольника.

Доказательство . Снова рассмотрим рисунок 2 и докажем, что выполнено равенство

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

где a, b, c – стороны треугольника ABC . Действительно, отрезки AG и AF равны, как отрезки касательных к окружности, выходящих из точки A . Отрезки CG и CH равны, как отрезки касательных к окружности, выходящих из точки C . Отрезки BF и BH равны, как отрезки касательных к окружности, выходящих из точки B . Отсюда получаем:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

где буквой p обозначен полупериметр треугольника ABC . Теорема 2 доказана.

Теорема 3 . Радиус вневписанной окружности , касающейся стороны b , вычисляется по формуле

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

где буквой S обозначена площадь треугольника ABC , а буквой p обозначен полупериметр треугольника ABC .

Доказательство . Снова рассмотрим рисунок 2 и заметим, что выполнены равенства

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Следовательно, справедливо равенство

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

что и требовалось доказать.

Следствие . Радиусы двух других вневписанных в треугольник ABC окружностей вычисляются по формулам:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Теорема 4 . Если обозначить буквой r радиус вписанной в треугольник ABC окружности, то будет справедлива формула:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Складывая эти формулы и воспользовавшись формулой для радиуса вписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности,

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

что и требовалось доказать.

Теорема 5 . Площадь треугольника можно вычислить по формуле

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Доказательство . Перемножим формулы

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

что и требовалось доказать.

Теорема 6 . Если обозначить буквой R радиус описанной около треугольника ABC окружности, то будет справедлива формула:

Доказательство . Воспользовавшись формулами для радиусов вписанной и вневписанных окружностей, а также формулой Герона, получим

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Преобразуем выражение, стоящее в квадратной скобке:

Содержание
  1. Как найти площадь треугольника
  2. Основные понятия
  3. Формула площади треугольника
  4. Общая формула
  5. 1. Площадь треугольника через основание и высоту
  6. 2. Площадь треугольника через две стороны и угол между ними
  7. 3. Площадь треугольника через описанную окружность и стороны
  8. 4. Площадь треугольника через вписанную окружность и стороны
  9. 5. Площадь треугольника по стороне и двум прилежащим углам
  10. 6. Формула Герона для вычисления площади треугольника
  11. Для прямоугольного треугольника
  12. Площадь треугольника с углом 90° по двум сторонам
  13. Площадь треугольника по гипотенузе и острому углу
  14. Площадь прямоугольного треугольника по катету и прилежащему углу
  15. Площадь треугольника через гипотенузу и радиус вписанной окружности
  16. Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу
  17. Площадь прямоугольного треугольника по формуле Герона
  18. Для равнобедренного треугольника
  19. Вычисление площади через основание и высоту
  20. Поиск площади через боковые стороны и угол между ними
  21. Площадь равностороннего треугольника через радиус описанной окружности
  22. Площадь равностороннего треугольника через радиус вписанной окружности
  23. Площадь равностороннего треугольника через сторону
  24. Площадь равностороннего треугольника через высоту
  25. Таблица формул нахождения площади треугольника
  26. МАТЕМАТИКА
  27. 📽️ Видео

Видео:✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис ТрушинСкачать

✓ Как вневписанная окружность Герону помогла | Ботай со мной #083 | Борис Трушин

Как найти площадь треугольника

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Радиус вневписанной окружности. Вывод формулы.Скачать

Радиус вневписанной окружности. Вывод формулы.

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Видео:Вневписанная окружностьСкачать

Вневписанная окружность

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Видео:[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема МансионаСкачать

[12] Площадь через радиус вневписанной окружности. Теорема о трилистнике, трезубец, Теорема Мансиона

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Видео:Математика за минуту: Формула радиуса вневписанной окружности в произвольный треугольник.Скачать

Математика за минуту: Формула радиуса вневписанной окружности в произвольный треугольник.

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Видео:Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.Скачать

Это будет на ЕГЭ 2020 по математике. Вписанная и вневписанная окружности.

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

МАТЕМАТИКА

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Рассмотрим произвольный треугольник АВС и проведем биссектрису Вневписанная окружность формула площади треугольника через радиус вневписанной окружности. Затем продолжим эту биссектрису за точку Вневписанная окружность формула площади треугольника через радиус вневписанной окружностидо пересечения в точке Вневписанная окружность формула площади треугольника через радиус вневписанной окружностис биссектрисой внешнего угла при вершине В (рис.1). Поскольку точка Вневписанная окружность формула площади треугольника через радиус вневписанной окружностилежит на биссектрисе угла А, то она равноудалена от прямых АВ и ВС. Следовательно, она равноудалена и от прямых АС и ВС, а значит, лежит на биссектрисе внешнего угла при вершине С.

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Продолжение биссектрисы треугольника, проведенной из одной из вершин, пересекается с биссектрисами внешних углов при двух других вершинах в одной точке.

Поскольку точка Вневписанная окружность формула площади треугольника через радиус вневписанной окружностиравноудалена от сторон внешних углов при вершинах В и С, то окружность с центром Вневписанная окружность формула площади треугольника через радиус вневписанной окружности, касающаяся стороны ВС, касается также и продолжений сторон АВ и АС (рис.2).

Эта окружность называется вневписанной окружностью треугольника АВС. Ясно, что любой треугольник имеет три вневписанных окружности. (рис.3).

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Положение центра Вневписанная окружность формула площади треугольника через радиус вневписанной окружностивневписанной окружности можно охарактеризовать так: это точка пересечения биссектрис внешних углов при вершинах В и С. Можно охарактеризовать его и совершенно иначе, если заметить, что точки Вневписанная окружность формула площади треугольника через радиус вневписанной окружности, В и С и центр О вписанной в треугольник АВС окружности лежат на одной окружности с диаметром Вневписанная окружность формула площади треугольника через радиус вневписанной окружности(рис.4), – это следует из того, что углы Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии Вневписанная окружность формула площади треугольника через радиус вневписанной окружностипрямые.

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Можно сказать, таким образом, что точка Вневписанная окружность формула площади треугольника через радиус вневписанной окружностипредставляет собой точку пересечения прямой Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии окружности, описанной около треугольника ВОС.

Принимая во внимание замечание в конце статьи (Точка пересечения продолжения биссектрисы, проведенной из одной из вершин треугольника, с описанной окружностью равноудалена от двух других вершин и центра вписанной окружности), из этого можно сделать еще один вывод:

Точки, в которых вписанная и вневписанная окружности касаются стороны треугольника, симметричны относительно середины этой стороны.

В самом деле, пусть D – точка пересечения продолжения биссектрисы Вневписанная окружность формула площади треугольника через радиус вневписанной окружностис описанной около треугольника АВС окружностью (рис.5). Тогда согласно упомянутому замечанию DB = DC = DO. Следовательно, D – центр окружности, описанной около четырехугольника Вневписанная окружность формула площади треугольника через радиус вневписанной окружности. Проведем из точек O, D и Вневписанная окружность формула площади треугольника через радиус вневписанной окружностиперпендикуляры к стороне ВС и обозначим их основания буквами P, Q и R соответственно (рис.6). Точки P и R являются точками касания вписанной и вневписанной окружностей со стороной ВС, а точка Q – середина этой стороны. Но Вневписанная окружность формула площади треугольника через радиус вневписанной окружности, значит, и PQ = QR, то есть точки P и R симметричны относительно точки Q.

Точка касания вневписанной окружности со стороной треугольника обладает еще одним замечательным свойством:

Прямая, проведенная через вершину треугольника и точку, в которой вневписанная окружность касается противоположной стороны, делит периметр треугольника пополам.

Можно убедиться в этом самостоятельно, используя рис. 7.

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

При решении задач, связанных с нахождением площади треугольника, часто полезной бывает следующая формула. Пусть Вневписанная окружность формула площади треугольника через радиус вневписанной окружности– радиус вневписанной окружности, касающейся стороны треугольника, равной а, р – полупериметр треугольника. Тогда

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Обозначим эту формулу (1).

Действительно, если две другие стороны данного треугольника равны b и c (рис. 8), то

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Замечание. Выпуклый четырехугольник может не иметь вписанной окружности, но он всегда имеет четыре вневписанные окружности.

Любопытно, что для площади S такого четырехугольника имеет место соотношение, похожее на формулу (1).

В самом деле, пусть стороны данного четырехугольника равны последовательно a, b, c и d; p – его полупериметр, Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии Вневписанная окружность формула площади треугольника через радиус вневписанной окружности– радиусы вневписанных окружностей, касающихся сторон, равных а и с. Допустим, что две другие стороны не параллельны (случай параллельных сторон рассмотрите самостоятельно). Продолжим их до пересечения в точке М (рис.9).

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Пусть Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии Вневписанная окружность формула площади треугольника через радиус вневписанной окружности– точки, в которых продолжения одной из сторон касаются вневписанных окружностей, причем Вневписанная окружность формула площади треугольника через радиус вневписанной окружностилежит на окружности, вписанной в маленький треугольник. Площадь S четырехугольника равна, очевидно, разности площадей большого и маленького треугольников. Периметр маленького треугольника равен Вневписанная окружность формула площади треугольника через радиус вневписанной окружности, а периметр большого треугольника равен

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Применяя к большому треугольнику формулу (1), а к меньшему – формулу , выражающую его площадь через радиус вписанной окружности и полупериметр, получаем:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Обозначим эту формулу (2)

С другой стороны, из подобия треугольников Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии Вневписанная окружность формула площади треугольника через радиус вневписанной окружности( Вневписанная окружность формула площади треугольника через радиус вневписанной окружностии Вневписанная окружность формула площади треугольника через радиус вневписанной окружности– центры вневписанных окружностей) находим Вневписанная окружность формула площади треугольника через радиус вневписанной окружности. Но отрезок Вневписанная окружность формула площади треугольника через радиус вневписанной окружностиравен полупериметру большого треугольника, то есть Вневписанная окружность формула площади треугольника через радиус вневписанной окружности.

Поэтому из полученной пропорции можно найти Вневписанная окружность формула площади треугольника через радиус вневписанной окружности:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Подставляя это выражение в равенство (2) получим:

Вневписанная окружность формула площади треугольника через радиус вневписанной окружности

Спасибо, что поделились статьей в социальных сетях

Источник: Атанасян Л.С. Геометрия. Дополнительные главы к учебнику 8 кл.: Учебное пособие для учащихся школ и классов с углубленным изучением математики.

📽️ Видео

Вневписанная окружность | Теоремы об окружностях - 3Скачать

Вневписанная окружность | Теоремы об окружностях - 3

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Вневписанная окружностьСкачать

Вневписанная окружность

✓ Неравенство, которое вынесло почти всех | ЕГЭ-2018. Задание 15. Математика. Профиль | Борис ТрушинСкачать

✓ Неравенство, которое вынесло почти всех | ЕГЭ-2018. Задание 15. Математика. Профиль | Борис Трушин

ТОП-3 конструкции с окружностями для №16 из ЕГЭ 2023 по математикеСкачать

ТОП-3 конструкции с окружностями для №16 из ЕГЭ 2023 по математике

Свойства вневписанной окружности #огэ #егэ #геометрияСкачать

Свойства вневписанной окружности   #огэ #егэ #геометрия

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиусаСкачать

Геометрия Доказательство Площадь треугольника равна произведению его полупериметра и радиуса

Формула радиуса вневписанной окружности в прямоугольный треугольник, касающейся гипотенузы.Скачать

Формула радиуса вневписанной окружности в прямоугольный треугольник, касающейся гипотенузы.

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16Скачать

Вся геометрия треугольника в одной задаче. Планиметрия. ЕГЭ 2023 математика задача 16

ПЛОЩАДЬ ТРЕУГОЛЬНИКА через радиус вписанной окружностиСкачать

ПЛОЩАДЬ ТРЕУГОЛЬНИКА через радиус вписанной окружности

ЕГЭ 2021 Математика. Метод площадей. Теорема Чевы. Вневписанная окружностьСкачать

ЕГЭ 2021 Математика. Метод площадей. Теорема Чевы. Вневписанная окружность
Поделиться или сохранить к себе: