Чему равен внешний угол равнобедренного треугольника? Какие у него свойства?
Как и для всякого треугольника, внешний угол при любой вершине равнобедренного треугольника равен сумме двух внутренних углов, не смежных с ним.
Помимо этого, внешние углы равнобедренного треугольника имеют свои свойства.
Внешний угол при вершине равнобедренного треугольника в два раза больше внутреннего угла при его основании.
Дано: ∆ ABC, AC=BC,
∠BCF — внешний угол при вершине C.
Так как внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, то
Поскольку ∠A=∠B (как углы при основании равнобедренного треугольника), то
Что и требовалось доказать.
Внешний угол при основании равнобедренного треугольника на 90º больше половины внутреннего угла при его вершине.
Дано: ∆ ABC, AC=BC,
∠NBC — внешний угол при вершине B.
Доказать: ∠NBC=1/2 ∠C +90º.
1) ∠A=∠ABC (как углы при основании равнобедренного треугольника).
Отсюда ∠NBC=180º-∠ABC=180º-(90º-1/2 ∠C)=90º+ 1/2 ∠C.
Видео:Задача 1 Внешний угол равнобедренного треугольникаСкачать
Равнобедренные треугольники
Равнобедренный треугольник — это такой треугольник, у которого две стороны равны. Равные стороны называются боковыми. Третья сторона называется основанием.
1. В равнобедренном треугольнике углы при основании равны.
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
3. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
4. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
5. Углы, противолежащие равным сторонам равнобедренного треугольника, всегда острые.
6. В равнобедренном треугольнике:
— биссектрисы, проведенные из вершин при основании, равны;
— высоты, проведенные из вершин при основании, равны;
— медианы, проведенные из вершин при основании, равны.
7. Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане, проведенных к основанию.
8. Вписанная окружность точкой касания делит основание пополам.
Внешним углом треугольника называется угол, смежный с каким-либо углом этого треугольника.
Внешний угол треугольника равен сумме двух углов, не смежных с ним.
$∠BCD$ — внешний угол треугольника $АВС$.
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$.
Для острого угла $В$: $АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А$: $ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- Котангенсом ($ctg$) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
В прямоугольном треугольнике $АВС$ для острого угла $В$:
- В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.
$cos BOA= — cos BOC;$
$ctg BOA= — ctg BOC.$
В треугольнике $ABC$ $AB=BC, AH$ — высота, $AC=34, cos ∠BAC=0.15$. Найдите $CH$.
Так как треугольник $АВС$ равнобедренный, то $∠A=∠С$ (как углы при основании)
Косинусы равных углов равны, следовательно, $cos∠BAC=cos∠ВСА=0.15$
Рассмотрим прямоугольный треугольник $АНС$.
Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Распишем косинус $∠НСА$ (он же $∠ВСА$) по определению:
Из последнего равенства найдем $НС$, для этого $0.15$ представим в виде обыкновенной дроби и воспользуемся свойством пропорции:
Если на сторонах $ВС, АВ$ и продолжении стороны $АС$ треугольника $АВС$ за точку $С$ отмечены соответственно $А_1,С_1,В_1$, лежащие на одной прямой, то
Во всяком треугольнике стороны относятся как синусы противолежащих углов:
В треугольнике $АВС$ $ВС=16, sin∠A=/$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.
Воспользуемся теоремой синусов:
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности
Далее подставим числовые данные и найдем $R$
Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
Видео:Внешний угол треугольникаСкачать
Свойства углов при основании равнобедренного треугольника: основные теории
Свойства углов при основании равнобедренного треугольника — важная тема, в частности она помогает людям, которые решили быть архитекторами или инженерами. Построение правильных чертежей — необходимая составляющая таких профессий. Важно, что даже рисование основывается на знании этих свойств, так как они помогают рисовать правильные пропорции.
Видео:№234. Один из внешних углов равнобедренного треугольника равен 115°. Найдите углы треугольника.Скачать
Свойства углов при основании равнобедренного треугольника
Вам будет интересно: Эволюция млекопитающих: описание, ступени, классы
Первая теорема основывается на утверждении, что углы, прилегающие к основанию треугольника, одинаковы по градусной мере. Вторая теорема основывается на том, что в треугольнике такого вида биссектриса, которая находится перпендикулярно к основанию, может считаться медианой и высотой.
Отсюда — третья теорема. Она гласит о том, что медиана, которая проведена к основанию данного треугольника, одновременно может быть высотой и биссектрисой. И, конечно, четвертая теорема утверждает, что высота, которая проведена перпендикулярно к основанию, считается медианой и биссектрисой.
Важно всегда помнить свойства углов при основании и определение равнобедренного треугольника, которое гласит, что такая фигура имеет боковые стороны, равные по длине друг другу.
Видео:№233. Докажите, что биссектриса внешнего угла при вершине равнобедренного треугольника,Скачать
Доказательства
В качестве примера доказательства к теореме можно рассмотреть равнобедренный треугольник ABC, у которого есть нижняя сторона BC. Необходимо доказать, что угол B равен углу C. Можно построить биссектрису с обозначением AD. Она вызывает ряд последовательностей, так как делит один треугольник на два идентичных. Они одинаковы, потому что так гласит первый признак равенства треугольников (у них есть общая сторона). Таким образом, угол B будет равен углу C. Что и требовалось доказать.
Из такого доказанного свойства углов при основании равнобедренного треугольника выводится еще одна теорема. Она касается третьего признака равенства треугольников.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Перед тем, как приступить к примеру, важно понимать следующее. Есть понятие о серединных перпендикулярах, которые пересекаются в конкретной точке, если проведены к сторонам треугольника.
Видео:Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать
Примеры
Необходимо доказать с помощью имеющихся знаний, что каждая точка серединного перпендикуляра удалена от концов отрезка одинаково. Проведем перпендикуляр e, который будет достигать отрезка AB. Точка O станет соответствующей серединой AB.
Можно рассмотреть точку L, которая будет находиться на прямой e. Затем сделать отрезки AL и BL. Получившиеся треугольники по итогу равны, потому что их углы при вершине O прямые, OL будет общим катетом, а катет OA равен OB. Из равенства треугольников понятно, что AL = BL. Что и требовалось доказать.
🔍 Видео
Определение угла равнобедренного треугольникаСкачать
№226. Докажите, что углы при основании равнобедренного треугольника острые.Скачать
№227. Найдите углы равнобедренного треугольника, если: а) угол при основании в два разаСкачать
Урок 2 | Виды углов | Равнобедренный треугольник | Сумма углов в треугольнике | Внешний уголСкачать
ЕГЭ 6 номер. Разбор задачи про внешний угол равнобедренного треугольника.Скачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Геометрия. 7 класс. Теоремы. Т5. Первое свойство равнобедренного треугольника.Скачать
Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать
7 класс. Геометрия. Равнобедренные треугольники.Скачать
№254. Найдите углы равнобедренного прямоугольного треугольника.Скачать
Почему углы при основании равны в равнобедренном треугольникеСкачать
№228. Найдите углы равнобедренного треугольника, если один из его углов равен: а) 40°Скачать
свойства равнобедренного треугольника. Задачи. Найти углы при основании, если внешний угол равенСкачать
Внешний угол треугольникаСкачать
Один из внешних углов равнобедренного треугольника равен 80 градусов Найдите углы этого треугольникСкачать