Вертикальные углы в окружности свойства

Вертикальные углы. Свойства вертикальных углов

Определение 1. Вертикальными углами называются два угла, у которых стороны одного угла являются продолжениями сторон другого угла.

Вертикальные углы в окружности свойства

На Рис.1 углы AOB и COD вертикальные. Вертикальные также углы AOD и BOC.

Видео:Вертикальные углы. 7 класс.Скачать

Вертикальные углы. 7 класс.

Свойства вертикальных углов

1. Вертикальные углы равны.

2. Две пересекающие прямые образуют две пары вертикальных углов.

Доказательство пункта 1. Поскольку 1, 3 и 2, 3 смежные углы, то имеем

Вертикальные углы в окружности свойства, Вертикальные углы в окружности свойства
Вертикальные углы в окружности свойства, Вертикальные углы в окружности свойства

Следовательно Вертикальные углы в окружности свойства. Аналогично доказывается, что Вертикальные углы в окружности свойства.

Видео:SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Задачи и решения

Задание 1. Угол 1 равен 32°. Найти углы 2, 3, 4 (Рис.2).

Вертикальные углы в окружности свойства

Решение. Так как углы 1 и 2 вертикальны, то Вертикальные углы в окружности свойства. Углы 1 и 4 смежные. Следовательно Вертикальные углы в окружности свойства. Тогда

Вертикальные углы в окружности свойстваВертикальные углы в окружности свойства.

Углы 3 и 4 вертикальные. Тогда Вертикальные углы в окружности свойства

Ответ. Вертикальные углы в окружности свойства.

Задание 2. При пересечении двух прямых образовались четыре угла. Сумма двух углов равна 220°. Найти все углы.

Решение. Из образованных четырех углов любые две или смежные, или вертикальные. Поскольку в нашей задаче сумма двух углов равна 220°, то эти углы вертикальные (так как сумма смежных углов равна 180°). Тогда каждый из этих углов равен 220°:2=110°. Смежный по отношению угла 110° , будет угол 180°-110°=70°. Следовательно остальные два угла равны 70°. Отметим, что сумма всех четырех углов равен 360°:

Вертикальные углы в окружности свойства.

Ответ. Вертикальные углы в окружности свойства.

Видео:7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Углы, связанные с окружностью

Вертикальные углы в окружности свойстваВписанные и центральные углы
Вертикальные углы в окружности свойстваУглы, образованные хордами, касательными и секущими
Вертикальные углы в окружности свойстваДоказательства теорем об углах, связанных с окружностью

Видео:Геометрия 7 класс (Урок№6 - Смежные и вертикальные углы. Аксиомы и теоремы.)Скачать

Геометрия 7 класс (Урок№6 - Смежные и вертикальные углы. Аксиомы и теоремы.)

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Вертикальные углы в окружности свойства

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Вертикальные углы в окружности свойства

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Вертикальные углы равны (доказательство)Скачать

Вертикальные углы равны (доказательство)

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголВертикальные углы в окружности свойства
Вписанный уголВертикальные углы в окружности свойстваВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголВертикальные углы в окружности свойстваВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголВертикальные углы в окружности свойстваДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголВертикальные углы в окружности свойстваВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаВертикальные углы в окружности свойства

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вертикальные углы в окружности свойства

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вертикальные углы в окружности свойства

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Вертикальные углы в окружности свойства

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вертикальные углы в окружности свойства

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Вертикальные углы в окружности свойства

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Вертикальные углы в окружности свойства

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиВертикальные углы в окружности свойстваВертикальные углы в окружности свойства
Угол, образованный секущими, которые пересекаются вне кругаВертикальные углы в окружности свойстваВертикальные углы в окружности свойства
Угол, образованный касательной и хордой, проходящей через точку касанияВертикальные углы в окружности свойстваВертикальные углы в окружности свойства
Угол, образованный касательной и секущейВертикальные углы в окружности свойстваВертикальные углы в окружности свойства
Угол, образованный двумя касательными к окружностиВертикальные углы в окружности свойстваВертикальные углы в окружности свойства

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Угол, образованный пересекающимися хордами хордами
Вертикальные углы в окружности свойства
Формула: Вертикальные углы в окружности свойства
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Вертикальные углы в окружности свойства

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Вертикальные углы в окружности свойства
Формула: Вертикальные углы в окружности свойства
Угол, образованный касательной и секущей касательной и секущей
Формула: Вертикальные углы в окружности свойства

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Вертикальные углы в окружности свойства

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Теорема о вертикальных углахСкачать

Теорема о вертикальных углах

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Вертикальные углы в окружности свойства

В этом случае справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Вертикальные углы в окружности свойства

В этом случае справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Вертикальные углы в окружности свойства

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Вертикальные углы в окружности свойства

Вертикальные углы в окружности свойства

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Центральные и вписанные углы

Вертикальные углы в окружности свойства

О чем эта статья:

Видео:Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.Скачать

Смежные и вертикальные углы. Практическая часть - решение задачи. 7 класс.

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Вертикальные углы в окружности свойства

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Вертикальные углы в окружности свойства

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021Скачать

Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Вертикальные углы в окружности свойства

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Вертикальные углы в окружности свойства

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Вертикальные углы в окружности свойства

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Вертикальные углы в окружности свойства

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Вертикальные углы в окружности свойства

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Вертикальные углы в окружности свойства

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Вертикальные углы в окружности свойства

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Вертикальные углы в окружности свойства

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Вертикальные углы в окружности свойства

ㄥBAC + ㄥBDC = 180°

Видео:ГЕОМЕТРИЯ 7 КЛАСС: Смежные и Вертикальные Углы // Свойства угловСкачать

ГЕОМЕТРИЯ 7 КЛАСС: Смежные и Вертикальные Углы // Свойства углов

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Вертикальные углы в окружности свойства

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Вертикальные углы в окружности свойства

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Вертикальные углы в окружности свойства

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🌟 Видео

Смежные углы. 7 класс.Скачать

Смежные углы. 7 класс.

Геометрия. 7 класс. Теоремы. Т1. Теорема о свойстве вертикальных углов.Скачать

Геометрия. 7 класс. Теоремы. Т1. Теорема о свойстве вертикальных углов.

Пары углов в геометрииСкачать

Пары углов в геометрии

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

7 класс// ГЕОМЕТРИЯ // Вертикальные углы / Свойство вертикальных углов / Решение задачСкачать

7 класс// ГЕОМЕТРИЯ // Вертикальные углы / Свойство вертикальных углов / Решение задач

Вертикальные углы (определение, свойства)Скачать

Вертикальные углы (определение, свойства)
Поделиться или сохранить к себе: