Построение угла с помощью окружности

Построение с помощью циркуля и линейки — описание, алгоритмы и задачи

Построение с помощью циркуля и линейки – древнейший способ расчета в евклидовой геометрии. Известен со времен Древней Греции. Данная тема изучается в средних и старших классах на уроках геометрии.

Рассмотрим все случаи построения на конкретных примерах.

Содержание
  1. Построение отрезка, равного данному
  2. Деление отрезка пополам
  3. Построение угла, равного данному
  4. Построение перпендикулярных прямых
  5. Пример 1
  6. Пример 2
  7. Построение параллельных (непересекающихся) прямых
  8. Построение правильного треугольника, вписанного в окружность
  9. Построение правильного четырехугольника вписанного в окружность
  10. Вариант 1
  11. Вариант 2
  12. Построение вписанного в окружность правильного пятиугольника
  13. Построение правильного шестиугольника, вписанного в окружность
  14. Геометрия. 7 класс
  15. Задачи на построение циркулем и линейкой с примерами решения
  16. Задача 1 (построение угла, равного данному)
  17. Задача 2 (построение серединного перпендикуляра к отрезку)
  18. Задача 3 (построение биссектрисы угла)
  19. Построение треугольника по трем элементам
  20. Задача 4 (построение треугольника по двум сторонам и углу между ними)
  21. Задача 5 (построение треугольника по стороне и двум прилежащим к ней углам)
  22. Задача 6 (построение треугольника по трем сторонам)
  23. 🔥 Видео

Видео:Построение угла равного данномуСкачать

Построение угла равного данному

Построение отрезка, равного данному

Есть отрезок СD. Задача — начертить равнозначный данному отрезок той же величины.

Построение угла с помощью окружности

Строится луч, имеющий начало в т. A. Циркуль отмеряет существующий отрезок CD. Циркулем откладывается отрезок, равнозначный первому отрезку, на том же начерченном луче от его начала (A).

Для подобного чертежа ножку с иглой закрепляют в начале луча A, а с помощью части с грифелем проводится дуга до места соприкосновения с лучом. Данную точку можно обозначить т. B.

Отрезок AB будет равнозначен отрезку СD. Задача решена.

Видео:Построение углов заданной градусной мерыСкачать

Построение углов заданной градусной меры

Деление отрезка пополам

Имеется отрезок AB.

Сначала следует нарисовать окружность с радиусом больше половины отрезка AB с центром в т. A.

Построение угла с помощью окружности

Далее чертится круг с тем же радиусом с серединой в т. B. В местах пересечения окружностей имеем т. C и т. D.

Сквозь эти точки требуется провести прямую линию. Получаем т. E, которая будет серединой отрезка AB.

Видео:Построение угла, равного данному. 7 класс.Скачать

Построение угла, равного данному. 7 класс.

Построение угла, равного данному

Имеется угол ABC.

Вблизи угла проводится луч ED. Далее чертится окружность с серединой в т. B. В итоге имеем точки M и N.

Построение угла с помощью окружности

Оставив раствор циркуля прежним, рисуют круг с серединой в т. E. В точке соприкосновения имеем т. K.

Поменяв раствор циркуля на длину расстояния между т. M и т. N, нужно провести окружность с серединой в т. K. В итоге получается т. F. После чертится прямая из т. E через т. F. Образуется угол DEF, который будет равнозначен углу ABC. Задача решена.

Видео:7 класс, 23 урок, Примеры задач на построениеСкачать

7 класс, 23 урок, Примеры задач на построение

Построение перпендикулярных прямых

Пример 1

Точка O находится на прямой a.

Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.

Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.

Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.

Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.

Доказательство, что прямая OC лежит перпендикулярно a.

Намечаются два отрезка — AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.

Построение угла с помощью окружности

Пример 2

Точка O находится вне прямой а.

Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.

Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 — место их соприкосновения.

Рисуем линию, соединяющая т. O и т. O1.

Доказательство выглядит следующим образом.

Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников).

Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.

Видео:Построить угол , равный данному.Скачать

Построить угол , равный данному.

Построение параллельных (непересекающихся) прямых

Имеется прямая и т. А, не лежащая на этой прямой.

Нужно отметить прямую, проходящую через т. A, и параллельную имеющейся прямой.

Берется рандомная точка на имеющейся прямой и именуется B. С помощью циркуля строится окружность радиуса AB с серединой в т. B. В месте пересечения окружности и данной прямой отмечается т. C.

Построение угла с помощью окружности

Оставив прежний радиус, рисуется еще одна окружность, теперь уже с центром в т. C. При правильных расчетах дуга должна пройти через т. B.

C тем же радиусом AB строится окружность с серединой в т. A. Точку соприкосновения второй и третьей окружностей назовем D. Третья окружность, учитывая верность расчетов, также пройдет через т. B.

Проводится прямая через т. A и т. D, которая станет параллельной первой. В итоге, получились две параллельные прямые, BC и AD.

Видео:Построение середины отрезкаСкачать

Построение середины отрезка

Построение правильного треугольника, вписанного в окружность

Правила построения правильного треугольника, вписанного в окружность:

Отметить отрезок AB, чья длина будет равняться а.

Взять циркуль. Часть с иголкой расположить на т. А, а часть с карандашом на т. B. Прочертить окружность. В итоге, радиус круга будет равнозначен длине отрезка AB.

Построение угла с помощью окружности

Далее иглу размещают на т. B, а часть с грифелем на т. A. Чертится круг. В итоге, его радиус будет равнозначен длине отрезка AB.

На чертеже окружности пересеклись в двух точках. Далее нужно соединить т. A и т. B и одну из вышеупомянутых точек. В результате получится равносторонний треугольник.

Стороны такого треугольника равнозначны радиусам двух окружностей, которые равны длине а. Задача решена.

Видео:Построить угол 30°Скачать

Построить угол 30°

Построение правильного четырехугольника вписанного в окружность

Вариант 1

Исходя из данности, что диагонали любого квадрата пересекаются в середине окружности и находятся по отношению к его осям под углом 45 градусов, производят следующие действия. Пользуясь линейкой и уголком с углами 45 градусов (см. рисунок), размечают вершины т. 1 и т. 3.

Сквозь данные точки чертят отрезки, стороны четырехугольника, расположенные по горизонтали. Это т. 4 и т. 1, т. 3 и т. 2. В конце линейкой и уголком по его катету проводятся линии, расположенные по вертикали (высоты), отрезок т.1 — т. 2 и отрезок т. 4 — т. 3.

Построение угла с помощью окружности

Вариант 2

Так как вершины правильного четырехугольника разделяют наполовину дуги окружностей, между точками диаметра (см. рисунок), то для достижения результата делают следующее: отмечают на точках перпендикулярных диаметров т. A, т. B и т. C и рисуют дуги до их соприкосновения.

После чертят прямые через места соприкосновения дуг, которые выделены на фигуре линиями. Точки соприкосновения с окружностью будут являться вершинами — это т. 1 и т. 3, т. 4 и т. 2. Данные вершины полученного квадрата соединяют друг с другом.

Задача выполнена двумя способами.

Видео:Построение биссектрисы углаСкачать

Построение биссектрисы угла

Построение вписанного в окружность правильного пятиугольника

Поместить на окружность т. 1, считая ее за вершину пятиугольника. Разделить отрезок AO пополам. Чтобы произвести подобную операцию, из т. A чертят дугу до места соприкосновения с окружностью в т. M и т. B.

Построение угла с помощью окружности

Расположив конкретные точки на прямой, получаем т. K, и после совмещаем с т. 1. Радиусом, длина которого – отрезок А1, сделать изгиб из т. K до места соприкосновения с линией АО в т. H. После совместить т. 1 и т. H, образуя одну из пяти сторон пятиугольника.

Взять циркуль, величина раствора которого будет равна отрезку т.1 — т. H, нарисовать изгиб из т. 1 до соприкосновения с кругом. Так находят вершины 2 и 5. Отметив точки на вершинах 2 и 5, получают вершины 3 и 4. В конце все точки совмещают друг с другом.

Видео:Строим прямой уголСкачать

Строим прямой угол

Построение правильного шестиугольника, вписанного в окружность

Решение подобной задачи строится на свойствах, где сторона шестиугольника равнозначна радиусу круга.

Построение угла с помощью окружности

Для расчета разделяют круг на шесть ровных частей и последовательно совмещают все полученные точки (см. рисунок). Задача решена.

Видео:Построение угла, равного данномуСкачать

Построение угла, равного данному

Геометрия. 7 класс

Конспект урока

Окружность. Задачи на построение

Перечень рассматриваемых вопросов:

  • Геометрическое место точек, примеры ГМТ.
  • Изображение на рисунке окружности и ее элементов.
  • Решение задач на построение.
  • Выполнение построений прямого угла, отрезка, угла равного данному, биссектрисы угла, перпендикулярных прямых, середины отрезка с помощью циркуля и линейки.

Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.

Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Хорда – отрезок, соединяющий две точки окружности.

Диаметр – хорда, проходящая через центр окружности.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М.А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали некоторые геометрические фигуры, например, угол, отрезок, треугольник, научились их строить и измерять. Сегодня мы введём определение ещё одной фигуры – окружности, рассмотрим её элементы и выполним построения геометрических фигур с помощью циркуля и линейки.

Для начала дадим определение геометрической фигуры, называемой окружностью.

Окружность – это геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки.

Построение угла с помощью окружности

Но можно использовать и другое определение окружности.

Окружность ‑ это геометрическое место точек, удалённых на одно и то же расстояние от точки, называемой центром окружности. Это расстояние называют радиусом окружности. В нашем случае точки О.

При этом стоит пояснить, что геометрическое место точек – это фигура речи, употребляемая в математике для определения геометрической фигуры, как множества всех точек, обладающих некоторым свойством.

Вспомним элементы окружности.

Радиус окружности – отрезок соединяющий центр окружности с какой-либо точкой окружности.

Построение угла с помощью окружности

По определению окружности все её радиусы имеют одну и ту же длину. OM = OA

Отрезок, соединяющий две точки окружности, называется хордой.

Построение угла с помощью окружности

Хорда, проходящая через центр окружности, называется диаметром.

Построение угла с помощью окружности

O – середина диаметра.

Любые две точки окружности делят её на две части. Каждая из этих частей называется дугой окружности.

Построение угла с помощью окружности

AMB, ALB – дуги окружности.

Построим окружность радиусом 3 см. Для этого поставим точку О. Возьмём циркуль и выставим с помощью линейки расстояние между ножками циркуля, равное 3 см. Поставим иголочку циркуля в точку О и построим окружность, вращая ножку циркуля с грифелем вокруг этой точки. Грифель описывает замкнутую кривую линию, которую называют окружностью.

Часть плоскости, которая лежит внутри окружности, вместе с самой окружностью, называют кругом, т. е. окружность ‑ граница круга.

Построение угла с помощью окружности

Итак, мы можем с помощью циркуля строить окружность, но с его помощью можно построить и угол равный данному. Для построения воспользуемся ещё и линейкой.

Построение угла с помощью окружности

Построить: EOМ = A.

1. Окр. (A; r), r – произвольный радиус.

2. Окр. (A; r) ∩ AB = B.

3. Окр. (A; r) ∩ AС = С.

Построение угла с помощью окружности

4. Окр. (O; r) ∩ OM = D.

5. Окр. (D; BС) ∩ Окр. (O; r) = E

Построение угла с помощью окружности

6. OЕ, ЕОD = BAC (из равенства ∆ОЕD и ∆ABC). EOM – искомый.

Теперь выполним построение биссектрисы угла.

Построение угла с помощью окружности

Построить: AE – биссектриса CAB.

  1. Окр. (A; r), r – произвольный радиус.

Построение угла с помощью окружности

  1. Окр. (A; r) ∩ AB = B.
  2. Окр. (A; r) ∩ AC = C.
  3. Окр. (C; CB) ∩ Окр. (B; CB) = E.
  4. AE – искомая биссектриса BAC, т. к. ABE =CBE (из равенства ∆ACE и ∆ABE).

Рассмотрим ещё одно построение с помощью циркуля и линейки. Построим середину отрезка АВ.

Построение угла с помощью окружности

Для этого построим две окружности с центрами на концах отрезка , т. е. в точках А и В. Окружности пересекутся в точках Р и Q. Проведём прямую через точки Р и Q. Прямая РQ пересечёт прямую АВ в точке О, которая и будет являться искомой серединой отрезка АВ. Докажем это. Для этого рассмотрим ∆APQ и ∆BPQ. Они равны по трём сторонам, следовательно, ∠1 = ∠2, поэтому РО– биссектриса равнобедренного ∆АВР, а соответственно РО ещё и медиана. Следовательно, точка О – середина отрезка АВ.

Построение угла с помощью окружности

Разбор заданий тренировочного модуля.

№ 1. АВ и СК – диаметры окружности, с центром в точке О. По какому признаку равенства треугольников равны треугольники АОС и ОКВ?

Построение угла с помощью окружности

Так как О – центр окружности, то точка О делит диаметры пополам, следовательно отрезки АО, ОВ, ОС, ОК равны. ∠СОА = ∠КОВ (как вертикальные). Поэтому треугольники АОС и ОКВ равны по первому признаку равенства треугольников (по двум сторонам и углу между ними).

Ответ: 1 признак равенства треугольников.

№ 2. На рисунке O – центр окружности, АВ – диаметр окружности. Отрезки АD и ВС, перпендикулярны к отрезку АВ. АВ = 8 см, ОС = 5 см, СВ = 3 см. Чему равен периметр ∆AOD?

Построение угла с помощью окружности

Периметр треугольника AOD равен сумме сторон АО, AD, DO. Найдём эти стороны.

По условию O – центр окружности, то она делит диаметр пополам, следовательно отрезок АО равен отрезку ОВ, т. е. АО = АВ:2 = 8 см :2 = 4 см.

По условию отрезки АD и ВС, перпендикулярны к отрезку АВ, следовательно ∠СВО = ∠ОАD = 90°, ∠АОD = ∠СОВ (как вертикальные). Поэтому ∆АОD = ∆СОВ (по 2 признаку равенства треугольников). Следовательно, AD = СВ = 3 см, DO = ОС = 5 см.

Р∆AOD = АО + AD + DO = 4 см + 3 см + 5 см = 12 см.

Видео:Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Задачи на построение циркулем и линейкой с примерами решения

Содержание:

Основные задачи на построение циркулем и линейкой:

В данном параграфе рассмотрим вопрос о построении геометрических фигур. Вы уже знаете, что геометрические построения можно осуществлять с помощью масштабной линейки, циркуля, транспортира и чертежного угольника. В то же время оказывается, что многие геометрические фигуры можно построить, пользуясь только циркулем и линейкой без масштабных делений.

При построении геометрических фигур с помощью циркуля и линейки без масштабных делений учитывается, что:

  1. с помощью линейки можно провести произвольную прямую, а также построить прямую, проходящую через две точки;
  2. с помощью циркуля можно провести окружность произвольного радиуса, а также построить окружность с центром в данной точке и радиусом, равным данному отрезку.

Теперь рассмотрим основные задачи на построение циркулем и линейкой: построение угла, равного данному, построение серединного перпендикуляра к отрезку, построение биссектрисы угла.

Видео:Построение угла равного данномуСкачать

Построение угла равного данному

Задача 1 (построение угла, равного данному)

От данного луча OF отложите угол, равный данному углу ABC.

Предположим, что угол DOF, удовлетворяющий условию задачи, построен (рис. 130, а).

ПустьПостроение угла с помощью окружности

Построение угла с помощью окружности

1) Строим окружность Построение угла с помощью окружности(В, R) , где R — произвольный радиус, и отмечаем точки А1 и С1 пересечения ее со сторонами угла ABC.

2) Строим окружность Построение угла с помощью окружности(0, R) с центром в точке О того же радиуса R и отмечаем ее точку пересечения F1 с лучом OF.

3) Строим окружность Построение угла с помощью окружности(F1, A1C1).

4) Пусть D1 — одна из точек пересечения окружностей Построение угла с помощью окружности(0, R) и Построение угла с помощью окружности(F1, A1C1) (рис. 130, б). Тогда угол D1OF — искомый. Докажем, что Построение угла с помощью окружностиD1OF =Построение угла с помощью окружностиABC.

Равенство Построение угла с помощью окружностиD1OF =Построение угла с помощью окружностиABC следует из равенства треугольников А1ВС1 и D1OF1. Действительно, по построению А1В = D1O = С1В = F1O. Кроме того, по построению F1D1 = А1С1, следовательно, треугольники А1ВС1 и D1OF1 равны по трем сторонам. Отсюда следует, что Построение угла с помощью окружностиD1OF =Построение угла с помощью окружностиА1ВС1, т. е. построенный угол D1OF равен данному углу ABC.

Видео:Задачи на построение с помощью циркуля и линейки - 7 класс геометрияСкачать

Задачи на построение с помощью циркуля и линейки - 7 класс геометрия

Задача 2 (построение серединного перпендикуляра к отрезку)

Постройте серединный перпендикуляр к данному отрезку АВ.

Проведем рассуждения, которые помогут осуществить необходимое построение. Предположим, что серединный перпендикуляр а к отрезку АВ построен (рис. 131, а). Пусть точки F и D лежат на серединном перпендикуляре так, что OF = OD. Прямоугольные треугольники FOB и DOB равны по двум катетам, следовательно, BF = BD. Иначе говоря, точки F и D лежат на окружности Построение угла с помощью окружности(B, BF) и BF > ОВ. Аналогично AF =AD, так как треугольник FOA равен треугольнику DOA. Кроме того, легко увидеть, что AF = BF. Таким образом, точки F и D лежат также и на окружности Построение угла с помощью окружности(A, BF).

Построение угла с помощью окружности

1) Строим окружности Построение угла с помощью окружности(A, R) и Построение угла с помощью окружности(B, R) , где R Построение угла с помощью окружностиПостроение угла с помощью окружности. Пусть, например, R = AB: Построение угла с помощью окружности(A, AB) и Построение угла с помощью окружности(B, AB) (рис. 131, б).

2) Отмечаем точки F и D пересечения окружностей Построение угла с помощью окружности(A, AB) и Построение угла с помощью окружности(B, AB).

3) Тогда прямая FD — серединный перпендикуляр к отрезку АВ. Докажем это.

Рассмотрим треугольники FAD и FBD (рис. 131, в). Указанные треугольники равны по трем сторонам. Следовательно, Построение угла с помощью окружностиAFD = Построение угла с помощью окружностиBFD. Отсюда следует, что в равнобедренном треугольнике AFD отрезок FO является биссектрисой, а значит, и высотой и медианой, т. е. прямая FO — серединный перпендикуляр к отрезку АВ.

Видео:Построение угла 120 градусов с помощью циркуля и линейки.Скачать

Построение угла 120 градусов с помощью циркуля и линейки.

Задача 3 (построение биссектрисы угла)

Постройте биссектрису данного угла ABC.

Допустим, что биссектриса BE данного угла ABC построена (рис. 132, а). Пусть точки F и D лежат на сторонах угла так, что BF = BD, О = FD Построение угла с помощью окружностиBE, а точка Т лежит на луче, противоположном лучу ОВ. Из равенства прямоугольных треугольников FOT и DOT (FO = OD, катет ОТ — общий) следует, что FT = DT, т. е. точка Т принадлежит окружностям равных радиусов с центрами в точках F и D. Построив точку Т, мы построим биссектрису ВТ данного угла.

Построение угла с помощью окружности

1) Строим окружность Построение угла с помощью окружности(B, R1) произвольного радиуса R1 с центром в вершине В данного угла (рис. 132, б).

2) Отмечаем точки F и D, в которых окружность Построение угла с помощью окружности(B, R) пересекает соответственно стороны ВА и ВС данного угла.

3) Строим окружности Построение угла с помощью окружности(F, R2) и Построение угла с помощью окружности(D, R2), где R2 > Построение угла с помощью окружностиFD. Отмечаем точку Т их пересечения, которая лежит внутри данного угла.

4) Проводим луч ВТ. Луч ВТ — искомый. Докажем это.

Рассмотрим треугольники BFT и BDT (рис. 132, в). Эти треугольники равны по трем сторонам (BF = BD и FT = DT — по построению, ВТ — общая сторона). Из равенства этих треугольников следует, что Построение угла с помощью окружностиFBT = Построение угла с помощью окружностиDBT, т. е. луч ВТ — биссектриса угла ABC.

Видео:Геометрия 7. Урок 10 - Построение циркулем и линейкойСкачать

Геометрия 7. Урок 10 - Построение циркулем и линейкой

Построение треугольника по трем элементам

В данном пункте рассмотрим задачи на построение треугольника по: а) двум сторонам, и углу между ними; б) стороне и двум прилежащим к ней углам; в) трем сторонам.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Задача 4 (построение треугольника по двум сторонам и углу между ними)

Постройте треугольник, две стороны которого равны двум данным отрезкам а и b, а угол между этими сторонами равен данному углу hk.

Даны два отрезка а, b и угол hk (рис. 133, а). Требуется с помощью циркуля и линейки построить треугольник ABC, две стороны которого, например, АВ и АС, равны соответственно отрезкам а и b, а угол ВАС равен углу hk.

Построение угла с помощью окружности

1) Проведем прямую, на ней отложим отрезок АС, равный отрезку b (рис. 133, б).

2) Строим угол CAF, равный углу hk.

3) На луче AF отложим отрезок АВ, равный отрезку а, и проведем отрезок ВС. Треугольник ABC — искомый (рис. 133, в).

По построению имеем, что АС = b, АВ = а и Построение угла с помощью окружностиBAC = Построение угла с помощью окружностиhk.

При любых данных отрезках а и b и неразвернутом угле hk каждое из построений 1) — 3) выполнимо, т. е. искомый треугольник можно построить. Треугольники, которые удовлетворяют условию задачи и строятся при различном выборе прямой и отрезка АС, равны между собой по двум сторонам и углу между ними, поэтому говорят, что данная за дача имеет единственное решение.

Видео:Построение биссектрисы угла. 7 класс.Скачать

Построение биссектрисы угла. 7 класс.

Задача 5 (построение треугольника по стороне и двум прилежащим к ней углам)

Постройте треугольник, сторона которого равна данному отрезку а, а углы, прилежащие к этой стороне, равны данным углам hk и mq.

Дан отрезок а и два угла hk и mq (рис. 134, а). Требуется с помощью циркуля и линейки построить треугольник ABC, сторона которого, например АС, равна отрезку а, а углы ВАС и ВСА равны соответственно углам hk и mq.

Построение угла с помощью окружности

1) Проведем прямую и на ней отложим с помощью циркуля отрезок АС, равный отрезку а (рис. 134, б).

2) Строим угол CAF, равный углу hk.

3) Строим угол ACT, равный углу mq.

4) Отмечаем точку В пересечения лучей AF и СТ. Треугольник ABC — искомый (рис. 134, в).

По построению имеем, что АС = a, Построение угла с помощью окружностиBAC = Построение угла с помощью окружностиhk и Построение угла с помощью окружностиACB = Построение угла с помощью окружностиmq.

Для любого данного отрезка а и неразвернутых углов hk и mq каждое из построений 1) — 4) выполнимо, т. е. искомый треугольник можно построить. Треугольники, которые удовлетворяют условию задачи и строятся при различном выборе прямой и отрезка АС, равны между собой по стороне и двум прилежащим к ней углам, поэтому говорят, что данная задача имеет единственное решение.

Видео:Построение угла с помощью транспортираСкачать

Построение угла с помощью транспортира

Задача 6 (построение треугольника по трем сторонам)

Постройте треугольник, стороны которого равны данным отрезкам а, b, с.

Даны отрезки а, b, с (рис. 135, а). Требуется с помощью циркуля и линейки построить треугольник ABC, стороны которого АВ, ВС и АС равны соответственно отрезкам a, b и с.

1) Проведем прямую и на ней с помощью циркуля отложим отрезок АС, равный отрезку с (рис. 135, б).

2) Строим окружность Построение угла с помощью окружности(A, a).

Построение угла с помощью окружности

3) Строим окружность Построение угла с помощью окружности(C, b).

4) Пусть В — одна из точек пересечения окружностей Построение угла с помощью окружности(A, a) и Построение угла с помощью окружности(C, b). Тогда треугольник ABC — искомый.

По построению АС = с, АВ = а, ВС = b.

Данная задача не всегда имеет решение. Известно, что в любом треугольнике длина каждой стороны меньше суммы длин двух других его сторон. Таким образом, если длина какого-либо из данных отрезков больше суммы длин двух других, то нельзя построить треугольник, стороны которого равны данным отрезкам.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Задачи на построение по геометрии
  • Угол — определение, виды, как обозначают с примерами
  • Перпендикулярные прямые в геометрии
  • Признаки равенства треугольников
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника — определение и вычисление
  • Свойства прямоугольного треугольника
  • Расстояние между параллельными прямыми

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🔥 Видео

Построение 8 угольника циркулемСкачать

Построение 8 угольника циркулем

№155. С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30'.Скачать

№155. С помощью циркуля и линейки постройте угол, равный: а) 45°; б) 22°30'.
Поделиться или сохранить к себе: