Алгоритм Робертса представляет собой первое известное решение задачи об удалении невидимых линий. Это математически элегантный метод, работающий в объектном пространстве. Алгоритм прежде всего удаляет из каждого тела те ребра или грани, которые экранируются самим телом. Затем каждое из видимых ребер каждого тела сравнивается с каждым из оставшихся тел для определения того, какая его часть или части, если таковые есть, экранируются этими телами. Поэтому вычислительная трудоемкость алгоритма Робертса растет теоретически, как квадрат числа объектов. Это в сочетании с ростом интереса к растровым дисплеям, работающим в пространстве изображения, привело к снижению интереса к алгоритму Робертса. Однако математические методы, используемые в этом алгоритме, просты, мощны и точны. Кроме того, этот алгоритм можно использовать для иллюстрации некоторых важных концепций. Наконец, более поздние реализации алгоритма, использующие предварительную приоритетную сортировку вдоль оси z и простые габаритные или минимаксные тесты, демонстрируют почти линейную зависимость от числа объектов.
Работа Алгоритм Робертса проходит в два этапа:
1. Определение нелицевых граней для каждого тела отдельно.
2. Определение и удаление невидимых ребер.
- 5.3.1. Определение нелицевых граней
- 5.3.2. Удаление невидимых ребер
- Основы линейной перспективы: как нарисовать куб с любого ракурса
- Зачем художнику уметь рисовать куб с любого ракурса?
- Что такое перспектива?
- Куб начинается с квадрата
- Что такое линия горизонта?
- Ориентируемся в пространстве
- Измеряем глубину
- Для правильного куба придется узнать кое-что об эллипсах
- Зачем в тексте про кубы информация про эллипсы?
- Первый угол — 90 градусов
- Превращаем эллипс в куб
- Как клонировать наши кубы
- Время активной практики. Клонируем кубы.
- Рисуйте «насквозь»
- Как нарисовать куб с любого ракурса за пять шагов?
- Еще один способ: построение с помощью масс
- Поднимем кубы над землей
- Рисуем кубы в пространстве по произвольной траектории
- Объединяем два упражнения
- А теперь пора нарисовать пару десятков кубов!
- Дополнительные материалы
- Вычисление нормалей и углов отражения
5.3.1. Определение нелицевых граней
Пусть F — некоторая грань многогранника. Плоскость, несущая эту грань, разделяет пространство на два подпространства. Назовем положительным то из них, в которое смотрит внешняя нормаль к грани. Если точка наблюдения – в положительном подпространстве, то грань – лицевая, в противном случае – нелицевая. Если многогранник выпуклый, то удаление всех нелицевых граней полностью решает задачу визуализации с удалением невидимых граней.
Для определения, лежит ли точка в положительном подпространстве, используют проверку знака скалярного произведения ( l , n ), где l – вектор, направленный к наблюдателю, фактически определяет точку наблюдения; n – вектор внешней нормали грани. Если ( l , n ) > 0, т. е. угол между векторами острый, то грань является лицевой. Если ( l , n ) a х + by + cz + d = 0
В матричной форме этот результат выглядит так:
где [P] T = [a b c d] представляет собой плоскость. Поэтому любое выпуклое твердое тело можно выразить матрицей тела, состоящей из коэффициентов уравнений плоскостей, т. е.
[ V ] = | , |
где каждый столбец содержит коэффициенты одной плоскости.
Напомним, что любая точка пространства представима в однородных координатах вектором [S] = [х у z 1]. Более того, если точка [S] лежит на плоскости, то [S]·[P] T = 0. Если же [S] не лежит на плоскости, то знак этого скалярного произведения показывает, по какую сторону от плоскости расположена точка. В алгоритме Робертса предполагается, что точки, лежащие внутри тела, дают отрицательное скалярное произведение, т. е. нормали направлены наружу. Чтобы проиллюстрировать эти идеи, рассмотрим следующий пример.
Рассмотрим единичный куб с центром в начале координат (рис.5.8 ).
Рис. 5.8. Куб с центром в начале координат
Шесть плоскостей, описывающих данный куб, таковы:
Более подробно уравнение правой плоскости можно записать как
Полная матрица тела такова:
[ V ] = | = | . |
Экспериментально проверим матрицу тела с помощью точки, о которой точно известно, что она лежит внутри тела. Если знак скалярного произведения для какой-нибудь плоскости больше нуля, то соответствующее уравнение плоскости следует умножить на -1. Для проверки возьмем точку внутри куба с координатами x = 1/4, y = 1/4, z = 1/4. В однородных координатах эта точка представляется в виде вектора
[ S ] = [1/4 1/4 1/4 1] = [1 1 1 4].
Скалярное произведение этого вектора на матрицу объема равно
[ S ] × [ V ] = [1 1 1 4] × | = [-2 6 -2 6 -2 6]. |
Здесь результаты для второго, четвертого и шестого уравнения плоскостей (столбцов) положительны и, следовательно, составлены некорректно. Умножая эти уравнения (столбцы) на -1, получаем корректную матрицу тела для куба:
[ V ] = | , |
В приведенном примере корректность уравнений плоскостей была проверена экспериментально. Разумеется, это не всегда возможно. Существует несколько полезных методов для более общего случая. Хотя уравнение плоскости содержит четыре неизвестных коэффициента, его можно нормировать так, чтобы d = 1. Следовательно, трех неколлинеарных точек достаточно для определения этих коэффициентов. Подстановка координат трех неколлинеарных точек (x1, y1, z1), (x2, y2, z2), (х3, у3, z3) в нормированное уравнение (5.1. ) дает
В матричной форме это выглядит так:
[X][C] = [D]
Решение этого уравнения дает значения коэффициентов уравнения плоскости: [C] = [X] -1 [D].
Другой способ используется, если известен вектор нормали к плоскости, т. е.
где i, j, k – единичные векторы осей х, у, z соответственно. Тогда уравнение плоскости примет вид
ax + by + cz + d = 0
Величина d вычисляется с помощью произвольной точки на плоскости. В частности, если компоненты этой точки на плоскости (х1, у1, z1), то
d = -( ax 1 + by 1 + cz 1)
Перед началом работы алгоритма удаления невидимых линий или поверхностей для получения желаемого вида сцены часто применяется трехмерное видовое преобразование. Матрицы тел для объектов преобразованной сцены можно получить или преобразованием исходных матриц тел, или вычислением новых матриц тел, используя преобразованные вершины или точки.
Если [В] – матрица однородных координат, представляющая исходные вершины тела, а [T] – матрица размером 4 ´ 4 видового преобразования, то преобразованные вершины таковы:
[ BT ] = [ B ][ T ],
где [BT] – преобразованная матрица вершин. Использование уравнения (5.2.) позволяет получить уравнения исходных плоскостей, ограничивающих тело:
[ B ][ V ] = [ D ],
где [V] – матрица тела, а [D] в правой части – нулевая матрица. Аналогично уравнения преобразованных плоскостей задаются следующим образом:
[ BT ][ VT ] = [ D ],
где [VT] – преобразованная матрица тела. Приравнивая левые части уравнения (5.6.) и (5.7.), получаем
Подставляя уравнение (5.5.), сокращая на [В] и умножая слева на [T] -1 , имеем
Итак, преобразованная матрица тела получается умножением исходной матрицы тела слева на обратную матрицу видового преобразования.
Тот факт, что плоскости имеют бесконечную протяженность и что скалярное произведение точки (вектора точки) на матрицу тела положительно, если точка лежит вне этого тела, позволяет предложить метод, в котором матрица тела используется для определения граней, которые экранируются самим этим телом.
Положительное скалярное произведение дает только такая плоскость (столбец) в матрице тела, относительно которой точка лежит снаружи, т. е. в положительном подпространстве. Проиллюстрируем это на примере уже рассмотренного единичного куба (рис. 5.9.):
Рис. 5.9. Точка наблюдения вне тела
Условие [Е]·[V] E ] × [ V ] = [0 0 1 0] ×
Отрицательное число в шестом столбце показывает, что грань с этим номером нелицевая. Положительное число в пятом столбце показывает, что грань лицевая. Нулевые результаты соответствуют плоскостям, параллельным направлению взгляда.
Положительный результат вектора E и вектора нормали можно интерпретировать как острый угол между этими векторами, отрицательный результат – как тупой угол. Если угол между векторами острый, то грань является лицевой; если угол тупой, то грань – нелицевая.
Этот метод является простейшим алгоритмом удаления невидимых поверхностей для тел, представляющих собой одиночные выпуклые многогранники. Он также используется для удаления нелицевых или задних граней из сцены перед применением одного из алгоритмов удаления невидимых линий, которые обсуждаются ниже. Этот способ часто называют отбрасыванием задних плоскостей. Для выпуклых многогранников число граней при этом сокращается примерно наполовину. Метод эквивалентен вычислению нормали к поверхности для каждого отдельного многоугольника.
Данный метод определения нелицевых граней в результате формирует аксонометрическую проекцию на некую плоскость, расположенную бесконечно далеко от любой точки трехмерного пространства. Видовые преобразования, включая перспективное, производятся до определения нелицевых плоскостей. Когда видовое преобразование включает в себя перспективу, то нужно использовать полное перспективное преобразование одного трехмерного пространства в другое, а не перспективное проецирование на некоторую двумерную плоскость. Полное перспективное преобразование приводит к искажению трехмерного тела, которое затем проецируется на некую плоскость в бесконечности, когда нелицевые плоскости уже определены. Этот результат эквивалентен перспективному проецированию из некоторого центра на конечную плоскость проекции.
В литературе описаны и другие способы удаления невидимых граней. Так, в источнике [4] все нормали к граням тела направляются внутрь тела и используется вектор, направленный от наблюдателя к проекционной плоскости.
5.3.2. Удаление невидимых ребер
После первого этапа удаления нелицевых отрезков необходимо выяснить, существуют ли такие отрезки, которые экранируются другими телами в картинке или в сцене. Для этого каждый оставшийся отрезок или ребро нужно сравнить с другими телами сцены или картинки.
Возможны следующие случаи:
¨ Грань ребра не закрывает. Ребро остается в списке ребер.
¨ Грань полностью закрывает ребро. Ребро удаляется из списка рассматриваемых ребер.
¨ Грань частично закрывает ребро. В этом случае ребро разбивается на несколько частей, видимыми из которых являются не более двух. Само ребро удаляется из списка рассматриваемых ребер, но в список проверяемых ребер добавляются те его части, которые данной гранью не закрываются.
Для оптимизации используется приоритетная сортировка (z-сортировка), а также, сравнения с прямоугольными объемлющими оболочками тел. Такой подход позволяет удалить целые группы или кластеры отрезков и тел. Например, если все тела в сцене упорядочены в некотором приоритетном списке, использующем значения z ближайших вершин для представления расстояния до наблюдателя, то никакое тело из этого списка, у которого ближайшая вершина находится дальше от наблюдателя, чем самая удаленная из концевых точек ребра, не может закрывать это ребро. Более того, ни одно из оставшихся тел, прямоугольная оболочка которого расположена полностью справа, слева, над или под ребром, не может экранировать это ребро. Использование этих приемов значительно сокращает число тел, с которыми нужно сравнивать каждый отрезок или ребро. Рис. 5.10 иллюстрирует работу алгоритма.
Рис. 5.10. Результат работы алгоритма Робертса
Видео:Направляющий и нормальный вектор прямой на плоскости | Векторная алгебраСкачать
Основы линейной перспективы: как нарисовать куб с любого ракурса
Советуем приготовить планшет или лист бумаги и ручку, чтобы все сразу попробовать. Читать эту статью просто так не имеет смысла — тут все про практику.
Видео:Математика без Ху!ни. Уравнение плоскости.Скачать
Зачем художнику уметь рисовать куб с любого ракурса?
Освоив кубы, вы сможете рисовать любые объекты: машин, людей, архитектуру. Тоже с любого ракурса, быстро и понятно. Например, вот так можно свести к кубам фигуру человека:
Задача нарисовать каждый кубик по отдельности выглядит посильной.
Известный художник Скотт Робертсон рисует технику, отталкиваясь от геометрических примитивов.
Этому методу следует и Moderndayjames:
Дальше будет много примеров. Советуем попробовать нарисовать основные моменты, чтобы лучше понять, о чем речь. Получится своеобразный конспект.
Видео:Математика Без Ху!ни. Касательная плоскость и нормаль к поверхности.Скачать
Что такое перспектива?
Рисовать куб с любого ракурса — это рисовать его в перспективе. Представьте камеру — она заменит нам наблюдателя. На расстоянии от камеры стоит куб. Между камерой и кубом находится стекло.
Стекло здесь — так называемая картинная плоскость. Проведем от камеры сквозь стекло линию — получится то, что называется лучом зрения (ЛЗ). Луч зрения всегда перпендикулярен картинной плоскости. Эти обозначения понадобятся нам дальше.
Нам нужно знать, как линии нашего объекта расположены в пространстве относительно чего-либо. Положение камеры — наша путеводная звезда. Рисовать в перспективе — значит представлять изображение с определенной точки зрения. Не бывает изображения без зрителя.
Дальше мы будем рассматривать сцену с двух точек зрения: то, как ее видит камера, и то, как она расположена относительно объекта. Это нужно, чтобы проще ориентироваться в пространстве.
Видео:Введение2 Уравнение плоскости Вектор нормалиСкачать
Куб начинается с квадрата
Куб состоит из шести квадратных плоскостей, соединенных вместе. Чтобы нарисовать куб, нам нужно знать, как правильно расположить в пространстве квадрат во всех без исключения случаях и с любого возможного ракурса.
Шесть квадратных плоскостей в пространстве.
Здесь мы добавим в наш словарь новое слово — нормальная линия или просто нормаль. Нормаль — это линия, перпендикулярная какой-либо поверхности. Если вы поставите карандаш вертикально на стол, он будет совпадать с направлением нормальной линии. Вы можете встретить этот термин в 3D, но в 2D его тоже используют.
У каждой плоскости есть бесконечное количество этих нормальных линий. Для простоты мы нарисуем только одну по центру.
Возьмем квадрат и расположим его перед камерой. Если нормаль перпендикулярна картинной плоскости и тем самым совпадает с лучом зрения, значит, мы видим поверхность без каких-либо искажений. В данном случае — обычный квадрат.
Слева — расположение объектов, справа — что видит камера.
Если мы наклоним нашу фигуру в каком-либо направлении, то нормаль больше не будет смотреть прямо на картинную плоскость. Поверхность прямоугольника сожмётся в том направлении, куда смотрит нормаль. Этот принцип называется сжатие по нормали. Каждая плоскость всегда сжимается только по своей нормальной линии.
Слева — расположение объектов, по центру — что видит камера, справа — реальный размер плоскости.
На приведенном примере боковые стороны прямоугольника сужаются кверху (с точки зрения камеры). Так получается потому, что это параллельные линии, которые уходят вдаль (относительно картинной плоскости). А вот линии, параллельные картинной плоскости, никогда не сходятся.
Слева — расположение объектов, справа — что видит камера.
Видео:Вектор нормали к поверхности поля в точкеСкачать
Что такое линия горизонта?
Параллельные линии, которые уходят вдаль, сходятся на линии горизонта. Эта истина так широко известна и непреложна, что авторы никогда не пересматривают ее обоснование. А мы пересмотрим — чтобы лучше понять, о чем речь.
Наша камера стоит строго вертикально, то есть ее низ параллелен плоскости земли. Представим себе не один, а несколько горизонтальных прямоугольников перед камерой. По мере того, как эти плоскости всё выше поднимаются над землёй, они всё сильнее сжимаются. В какой-то момент плоскость визуально сожмется в плоскую линию — это будет линия горизонта.
Слева — расположение объектов, справа — что видит камера.
Находим линию горизонта.
Слева — расположение объектов, справа — что видит камера.
Параллельные линии, расположенные на горизонтальных плоскостях (на любой из них) сходятся на линии горизонта. Точки, в которых они сходятся, называются точками схода (ТС).
Слева — расположение объектов, справа — что видит камера.
Как видите, у каждого набора параллельных линий есть своя собственная точка схода. Для перспективы типично наличие центральной (ЦТС), левой (ЛТС) и правой (ПТС) точек схода.
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Ориентируемся в пространстве
Теперь попробуем разобраться в том, как прямоугольники изменяются по мере увеличения расстояния от зрителя.
Возьмем несколько прямоугольников и выстроим их в ряд. Все они имеют одинаковый размер и расположены впритык друг к другу. И хотя в действительности все они имеют одинаковый физический размер, каждый последующий прямоугольник в перспективе становится меньше. Благодаря этому явлению параллельные линии «сходятся на линии горизонта».
Прямоугольники в пространстве.
Благодаря изменению размера наш мозг воспринимает глубину. Но оно происходит не линейно: каждый прямоугольник сжимается по своей нормали, когда его наклоняют относительно зрителя. Плоскость сжимается тем сильнее, чем она ближе к линии горизонта.
Разница в размере между парами прямоугольников, лежащих ближе к зрителю, ярче выражена, чем между теми, которые ближе к горизонту.
Видео:Геометрия. 9 класс. Уравнение прямой. Направляющий вектор и вектор нормали прямой /22.10.2020/Скачать
Измеряем глубину
Проведём три горизонтальные линии в перспективе аналогично прямоугольникам выше. Изменяем только одно требование: интервалы между ними должны быть одинаковыми. Что мы увидим? Отрезок B в два раза короче, чем A, но C в шесть раз короче, чем B.
Каждый следующий сантиметр на бумаге вмещает в себя все больше и больше пространства по мере приближения к горизонту.
Это важно понимать при рисовании не только механизмов, но и природных форм. Даже фигуры человека. Как и любой другой объект, тело существует в пространстве. Важно точно знать, где именно расположены ключевые точки тела. А для этого нужно освоить измерения в перспективе. Набравшись опыта, вы сможете делать обоснованные догадки, уже не рисуя вспомогательные конструкции.
Видео:Видеоурок "Нормальное уравнение прямой"Скачать
Для правильного куба придется узнать кое-что об эллипсах
Теперь нам нужно нарисовать эллипсы. Тут нам пригодятся те же знания, что мы получили, изучая квадратные плоскости: потому, что плоскость может быть любой формы, в том числе овальной или круглой. У плоского круга или овала тоже есть нормальная линия, и она точно так же перпендикулярна поверхности плоскости.
Нормальная линия плоского эллипса всегда совпадает по направлению с его малой осью.
Принцип тот же, что и в случае с прямоугольниками. Слева — вид сверху, справа — что видит камера.
Важно помнить, что у круга всегда одинаковый диаметр, в каком бы направлении мы его не провели. После сжатия круг превращается в овал, и у него появляется самый длинный (большая ось эллипса) и самый короткий (малая ось эллипса) диаметры.
Большая ось не меняет свою длину, как бы сильно мы ни наклоняли плоскость. Малая ось перпендикулярна большой, а ее направление совпадает с нормальной линией. Длина малой оси меняется сильнее всего, когда мы наклоняем плоскость по отношению к камере.
Большая ось сейчас расположена горизонтально, а малая — вертикально. По ней и происходит сжатие. Размеры большой оси не меняются.
Видео:Координаты вектора в пространстве. 11 класс.Скачать
Зачем в тексте про кубы информация про эллипсы?
Эллипсы помогают определить направление нормальной линии поверхности, поэтому их удобно использовать, даже если на рисунке нет видимых круглых плоскостей. Они подсказывают, в каком направлении сжимать плоскость, когда она наклонена по отношению к зрителю.
Слева плоскость расположена прямо относительно камеры, справа — наклонена относительно камеры.
Еще эллипс может пригодится, чтобы определить угол наклона плоскости относительно зрителя. Сильнее наклон, сильнее сжатие.
Нет наклона = нет сжатия. В центре и справа плоскости наклонены относительно зрителя.
И, последний, самый важный пункт. Эллипс помогает найти пропорции идеального квадрата: круг, вписанный в квадрат, касается каждой из четырех сторон точно посередине.
Круг всегда касается сторон квадрата посередине.
Видео:№364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ,Скачать
Первый угол — 90 градусов
Помимо пропорций квадрата, нам нужно убедиться, что у нашей фигуры есть четыре прямых угла (по 90 градусов). Для этого необходимо правильно построить хотя бы один угол — три остальных встанут на свои места.
Эллипс поможет найти правильный угол между двумя линиями на одной плоскости.
Исходное расположение объектов. Смотрите ниже, как мы превращаем круг в квадрат.
Определяем пропорции квадрата с заданного ракурса, используя эллипс.
Слева — что видит камера, справа — расположение камеры относительно фигуры, вид сверху.
Проведем нормальную линию (она здесь вертикальная, потому что плоскость горизонтальная). Её можно проводить в разных местах — в зависимости от того, как мы хотим развернуть к себе угол будущего квадрата.
Как далеко нормаль должна выходить за пределы эллипса до той точки, где она пересекается с касательными? Это зависит от угла наклона эллипса.
Вид из камеры. Нормаль выходит из центра эллипса. Чем меньше его наклон по отношению к камере, тем длиннее линия.
Чем ближе линия горизонта к эллипсу (с учётом его размера), тем сильнее перспективное искажение, и тем быстрее сходятся линии. Это также значит, что объект или находится близко к зрителю, или он большой. Изображение выглядит так, как будто снято через широкоугольный объектив.
Если линия горизонта находится далеко от эллипса, перспективное искажение будет слабым. Линии будут сходиться медленно, объект покажется маленьким или будет расположен далеко от зрителя. Это эффект длиннофокусного объектива.
Слева горизонт очень близко и линии сходятся быстрее, справа горизонт далеко и линии сходятся медленнее.
Здесь видно, что вертикальная линия в обоих случаях выходит за пределы эллипса на одно и то же расстояние. Нижний угол квадрата одинаковый. Разница только в силе перспективы. И ещё раз напоминаем: линия горизонта перпендикулярна нормали эллипса (малой оси).
Горизонт — это по сути ещё одна плоскость, параллельная нашему эллипсу. Просто она полностью наклонена по отношению к зрителю.
Итак, наш эллипс готов.
Видео:Аналитическая геометрия, 5 урок, Уравнение плоскостиСкачать
Превращаем эллипс в куб
У куба шесть граней, но одновременно мы можем увидеть лишь три из них. Так что, простоты ради, мы сосредоточимся только на видимых сторонах (пока). Начнем с верхней грани. Вы уже знаете, как изобразить горизонтальный квадрат в любом возможном положении, так что сделайте это — нарисуйте квадрат вокруг эллипса.
Теперь нужно дорисовать две боковые грани. Чтобы найти их, используйте вертикально расположенные рёбра куба — нормали к верхней плоскости.
Осталось еще узнать длину вертикального ребра. Оно параллельно картинной плоскости и становится длиннее, когда перемещается ближе к нам в пространстве (как и любой другой объект), в соответствии с конвергенцией (сближением) линий.
Мы предполагаем, что ребро немного длиннее, чем большая ось нашего верхнего эллипса, на которую тоже не действует перспективное сокращение.
Есть одна хитрость, которая помогает проверить, правильно ли мы построили боковые грани. Это можно сделать с помощью эллипса.
Нарисуйте эллипс, малая ось которого направлена в правую точку схода. Эллипс должен касаться рёбер куба посередине. Затем просто закройте снизу левую грань с помощью линии, идущей к левой точке схода. А потом правую грань — линией, идущей к правой точке схода.
Видео:№402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0)Скачать
Как клонировать наши кубы
Для этого вернемся к рисованию прямоугольников. У каждого прямоугольника есть диагонали, они пересекаются в его центре. Диагонали помогают нам рисовать одинаковые прямоугольники.
Диагонали прямоугольника пересекаются в его центре.
Давайте потренируемся. Найдите центр прямоугольника, используя диагонали.
- Нарисуйте среднюю линию прямоугольника и продолжите ее в том направлении, куда собираетесь клонировать прямоугольник. Средняя линия пересечёт сторону прямоугольника в точке А.
- Продолжите стороны прямоугольника в том же направлении.
Найдите центр прямоугольника. Продлите линии в ту сторону, куда будете его клонировать.
- Проведите через точку A линию из дальнего угла прямоугольника. Она пересечет его продлённую сторону в точке B. Точка B отмеряет ширину нового, точно такого же прямоугольника.
- Теперь проведите вертикальную линию. Она станет дальней стороной нового прямоугольника.
Вы можете удваивать прямоугольники с помощью диагонали не только на плоскости, но и в перспективе. Сначала найдите центр прямоугольника, затем размножьте его во всех направлениях. Заполните всю страницу такими конструкциями.
Клонирование прямоугольника во всех направлениях.
Следует помнить, что в перспективе центр прямоугольника смещается по отношению к зрителю. Это происходит из-за схождения линий. Когда перспективное искажение небольшое (горизонт далеко по сравнению с размерами объектов), линии сходятся медленно, и центр прямоугольника смещается незначительно. И наоборот, смещение центра очень ярко выражено в случае сильного перспективного искажения.
Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать
Время активной практики. Клонируем кубы.
Постройте куб. Нижняя грань параллельна земле, никаких причудливых наклонов. Затем клонируйте любую грань куба с помощью метода диагоналей. Наметьте линии, которые будут направлены в точки схода.
Нарисуйте куб в перспективе.
Помните, квадраты сжимаются сильнее по мере удаления от зрителя. Если сравнивать первый и второй квадраты, этот эффект выражен ярко. Для каждого последующего квадрата он менее очевиден, но присутствует всегда.
Постройте новые кубы, клонируя квадратные плоскости.
Нарисуйте кубы один за другим. Заполните ими всю страницу.
Видео:Координаты вектора. 9 класс.Скачать
Рисуйте «насквозь»
Сквозное построение означает, что вы рисуете твердые тела так, будто они прозрачные. Так вы всегда будете знать, где именно в пространстве находятся те участки поверхности тела, которые недоступны глазу. Это поможет правильно располагать тела по отношению друг к другу.
Переходим к практике:
- Нарисуйте куб способом выше, но теперь обозначьте и его невидимые рёбра тоже.
Рисуем куб «насквозь», со всеми с невидимыми гранями.
- Клонируйте куб по направлению к правой точке схода. Оставьте между двумя кубами пустое пространство размером с такой же куб.
Клонируем куб в сторону ПТС. Не забываем оставить между ними пространство величиной с такой же куб.
- Теперь клонируйте куб в сторону левой точки схода. И снова оставьте между ними расстояние, куда мог бы поместиться третий куб.
Повторяем упражнение к ЛТС.
- Заполните всю страницу такими построениями, меняя ракурс и степень перспективного искажения.
Интересная деталь. Как вы могли заметить, уходя вдаль, некоторые плоскости сильнее сжимаются (мы уже знаем почему), а другие — наоборот, больше открываются зрителю.
Это происходит потому, что угол между лучом зрения и поверхностью этих плоскостей приближается к прямому (90 градусов).
Видео:Координаты нормального вектора ...#осень2022 #образованиеСкачать
Как нарисовать куб с любого ракурса за пять шагов?
Теперь переходим к самому интересному!
Шаг 1. Нарисуйте эллипс. Он может располагаться на любой грани куба. Здесь вас должны волновать только сжатие и направление нормали.
Шаг 2. Проведите нормальную линию исходя из того, как вы хотите развернуть ближайшее к зрителю ребро куба. Линия горизонта для этого куба фактически не будет горизонтальной. Да, получился немного каламбур)
Какой она тогда должна быть? Просто перпендикулярной нормали нашей плоскости. Это единственное требование.
Шаг 3. Определитесь с силой перспективного искажения. В нашем случае линия горизонта находится за пределами холста, поэтому оно выражено слабо.
Шаг 4. Определите правильную длину «вертикального» ребра куба, используя эллипс или просто на глаз. Проведите линию к правой точке схода, чтобы закрыть грань снизу.
Шаг 5. Последняя грань сама станет на место. Просто постройте правильные параллельные линии к тем, которые уже есть.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Еще один способ: построение с помощью масс
Масса — это простое сферическое или колбасоподобное тело, используемое в качестве основы для построения сложных форм. Думайте о ней как о комке глины, существующем в трехмерном пространстве.
Это не плоская фигура на бумаге, у нее есть реальный физический объем.
Используя массы, легче воссоздать чувство размера в рисунке. Они же помогут решить проблемы перспективного искажения и наложения объектов друг на друга. Как видите, метод масс работает со всеми тремя ключевыми компонентами глубины в вашем рисунке.
Давайте теперь создадим куб из сферической массы. Независимо от того, как он развернут, куб идеально вписывается в сферу.
Куб, вписанный в сферу.
- Нарисуйте круг.
- Постройте куб, используя знания, усвоенные из предыдущих блоков. Разворачивайте его как хотите, просто попробуйте соотнесите друг с другом его рёбра внутри массы.
- Прямо сейчас нарисуйте целую страницу кубов, вписанных в сферы. Меняйте размер и ракурс.
Основная идея: каждая масса имеет центр. Центр сферической (или яйцеобразной) массы всегда совпадает с ее геометрическим центром. Давайте построим несколько одинаковых по размеру масс с равными промежутками между ними.
- Постройте ряд одинаковых прямоугольников. Поставьте точку в центре каждой горизонтально расположенной стороны. Эти точки и будут центрами сферических масс.
Постройте квадраты в перспективе.
- Нарисуйте сферу вокруг каждой точки. Контур каждой сферы должен касаться линий, которые направлены в центральную точку схода, — если вы хотите, чтобы сферы были одинакового размера.
Нарисуйте сферическую массу вокруг обозначенной точки.
- Встройте кубы внутрь сферических масс. Разворачивайте их, как хотите, они всё равно будут одного размера, и расстояния между их центрами будут одинаковыми.
Нарисуйте куб внутри каждой сферы.
Видео:Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать
Поднимем кубы над землей
- Нарисуйте на земле квадрат, затем проведите внутри него прямую линию. Эта линия представляет собой расстояние между двумя кубами. Обозначьте точку схода, в которую направлена линия.
Проведите прямую линию внутри квадрата.
- Постройте вертикальную плоскость от исходной прямой. Верхние углы этой плоскости будут центральными точками наших масс.
Постройте вертикальную плоскость.
- Нарисуйте первую сферу и линию к точке схода так, чтобы она касалась контура сферы. Эта же линия должна касаться и контура второй сферы.
Нарисуйте массы одинакового размера с центрами в верхних углах плоскости.
- Впишите куб в каждую массу, как в предыдущем упражнении.
Впишите куб в каждую массу.
Видео:ВМ. ШМ. 7.2 Угол между двумя плоскостями. Координаты вершин куба.Скачать
Рисуем кубы в пространстве по произвольной траектории
Для начала вспомним про диагонали и построим с помощью них кривую в перспективе. Вот, как это сделать.
- Нарисуйте квадрат.
- Проведите произвольную кривую внутри него.
- Нарисуйте диагонали и средние линии квадрата. Это прямоугольное построение поможет вам перенести кривую в перспективу.
Шаг 1. Кривая в ортогональном виде, то есть без перспективных искажений, прямо перед зрителем.
- На новом слое с помощью эллипса определите, как будет выглядеть квадрат в перспективе. Проведите линию горизонта.
Шаг 2 выглядит так. Помните, чем ближе линия горизонта к эллипсу, тем сильнее перспективное искажение.
- Нарисуйте квадрат в одноточечной перспективе, где линии параллельны либо картинной плоскости (тогда они вообще не сходятся), либо лучу зрения. Те, которые параллельны лучу зрения, сходятся в центре линии горизонта. Эта точка называется центральной точкой схода, как вы, возможно, помните. Это самый простой способ нарисовать прямоугольник.
Шаг 3. Постройте квадрат вокруг вашего круга.
- Затем проведите диагонали и средние линии. Они будут служить вашим ориентиром.
- Перенесите точки пересечения кривой с этими линиями из вашего ортографического рисунка. Например, если кривая касается верхней стороны квадрата по центру, она будет делать то же самое и в перспективе.
Шаг 4. Перенесите кривую из вида сверху в перспективный вид, опираясь на опорные точки.
- Нарисуйте несколько кривых этим способом и заполните всю страницу такими построениями.
Видео:Угол между векторами. 9 класс.Скачать
Объединяем два упражнения
Наша цель — построить кубы одинакового размера с одинаковым расстоянием между ними, но расположенные на неправильной траектории.
- Проведите кривую в перспективе.
Шаг 1. Постройте кривую в перспективе.
- Отметьте на кривой точки, соблюдая равные интервалы между ними. Каждая точка соответствует центру массы. Определите размеры масс, которые находятся далеко от зрителя. Тогда вам будет легче определить на глаз размеры масс, расположенных в промежутках.
- Вот как это можно сделать: проведите прямую, проходящую через две точки, и продолжайте её, пока она не пересечётся с горизонтом в точке схода. Линии, по которым мы будем выравнивать размер масс (они касаются контуров обеих сфер), тоже должны быть направлены в эту точку схода.
Шаг 2. Отметьте на теле кривой точки с равными интервалами.
Шаг 3. Нарисуйте массы одинакового размера. Точки на кривой — это их центры.
- Заполните всю длину кривой такими сферами.
- Теперь можно начинать рисовать внутри масс кубы. Поворачивайте их как хотите.
Впишите куб в каждую массу.
Видео:№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать
А теперь пора нарисовать пару десятков кубов!
С разных ракурсов, в разных местах, с перекрытиями. Попробуйте разную силу перспективного искажения. Обязательно нарисуйте, даже если считаете, что все поняли. Это ОЧЕНЬ поможет рисовать потом любые другие предметы. Верьте в практику!
Что можно сделать:
Пример домашнего задания.
По материалам ресурса How to sketch.
Дополнительные материалы
Здесь можно посмотреть еще видео по теме.
Когда разберетесь с этими упражнениями, можно попробовать порисовать технику, как в этом плейлисте ModernDayJames. Стартовать можно отсюда:
А тут рассказывают, как понимание геометрических примитивов поможет в рисовании динамичных поз:
Вычисление нормалей и углов отражения
Тема9. Построение реалистических изображений
В этом разделе мы рассмотрим методы, которые позволяют получить более-менее реалистичные изображения для объектов, моделируемых многогранниками и полигональными сетками.
Модели отражения света
Рассмотрим, как можно определить цвет пикселов изображения поверхности согласно интенсивности отраженного света при учете взаимного расположения поверхности, источника света и наблюдателя.
Зеркальное отражение света.Угол между нормалью и падающим лучом (Θ) равен углу между нормалью и отраженным лучом. Падающий луч, отраженный, и нормаль располагаются в одной плоскости (рис. 4.29).
Поверхность считается идеально зеркальной, если на ней отсутствуют какие либо неровности, шероховатости. Собственный цвет у такой поверхности не наблюдается. Световая энергия падающего луча отражается только по линии отраженного луча. Какое-либо рассеяние в стороны от этой линии отсутствует. В природе, вероятно, нет идеально гладких поверхностей, поэтому полагают, что если глубина шероховатостей существенно меньше длины волны излучения, то рассеивания не наблюдается. Для видимого спектра можно принять, что глубина шероховатостей поверхности зеркала должна быть существенно меньше 0.5 мкм
Если поверхность зеркала отполирована неидеально, то наблюдается зависимость интенсивности отраженного света от длины волны — чем больше длина волны, тем лучше отражение. Например, красные лучи отражаются сильнее, чем синие.
При наличии шероховатостей имеется зависимость интенсивности отраженного света от угла падения. Отражение света максимально для углов, близких к 90 градусам.
Падающий луч, попадая на слегка шероховатую поверхность реального зеркала, порождает не один отраженный луч, а несколько лучей, рассеиваемые по различным направлениям. Зона рассеивания зависит от качества полировки и может быть описана некоторым законом распределения. Как правило, форма зоны рассеивания симметрична относительно линии идеального зеркально отраженного луча. К числу простейших, но достаточно часто используемых, относится эмпирическая модель распределения Фонга, согласно которой интенсивность зеркально отраженного излучения пропорциональна (cosа) p , где а— угол отклонения от линии идеально отраженного луча. Показатель р находится в диапазоне от 1 до 200 и зависит от качества полировки. Запишем это таким образом:
где I— интенсивность излучения источника, Ks— коэффициент пропорциональности, который изменяется от 0 до 1.
Диффузное отражение.Этот вид отражения присущ матовым поверхностям. Матовой можно считать такую поверхность, размер шероховатостей которой уже настолько велик, что падающий луч рассеивается равномерно во все стороны. Такой тип отражения характерен, например, для гипса, песка бумаги. Диффузное отражение описывается законом Ламберта, согласно которому интенсивность отраженного света пропорциональна косинусу угла между направлением на точечный источник света и нормалью к поверхности (рис. 4.30).
где I— интенсивность источника света, Kd— коэффициент, который учитывает свойства материала поверхности. Значение Kd находится в диапазоне от 0 до 1 . Интенсивность отраженного света не зависит от расположения наблюдателя.
Матовая поверхность имеет свой цвет. Наблюдаемый цвет матовой поверхности определяется комбинацией собственного цвета поверхности и цвета излучения источника света.
При создании реалистичных изображений следует учитывать то, что в природе, вероятно, не существует идеально зеркальных или полностью матовых поверхностей. При изображении объектов средствами компьютерной графики обычно моделируют сочетание зеркальности и диффузного рассеивания в пропорции, характерной для конкретного материала. В этом случае модель отражения записывают в виде суммы диффузной и зеркальной компонент:
где константы Kd, KS определяют отражательные свойства материала.
Согласно этой формуле интенсивность отраженного света равна нулю для некоторых углов Θ и а. Однако в реальных сценах обычно нет полностью затемненных объектов, следует учитывать фоновую подсветку, освещение рассеянным светом, отраженным от других объектов. В таком случае интенсивность может быть эмпирически выражена следующей формулой:
где Iа — интенсивность рассеянного света, Ка — константа, изменяется от 0 до 1.
Можно еще усовершенствовать модель отражения, если учесть то, что энергия от точечного источника света уменьшается пропорционально квадрату расстояния. Использование такого правила вызывает сложности, поэтому на практике часто реализуют модель, выражаемую эмпирической формулой:
где R — расстояние от центра проекции до поверхности, k — константа.
Как определить цвет закрашивания точек объектов в соответствии с данной моделью? Наиболее просто выполняется расчет в градациях серого цвет (например, для белого источника света и серых объектов). В данном случае интенсивность отраженного света соответствует яркости. Сложнее обстоит дело с цветными источниками света, освещающими цветные поверхности. Например, для модели RGB составляются три формулы расчета интенсивности отраженного света для различных цветовых компонент. Коэффициент! Ка и Kd различны для разных компонент — они выражают собственный цвет поверхности. Поскольку цвет отраженного зеркального луча равен цвету источника, то коэффициент Ks будет одинаковым для всех компонент цветовой модели. Цвет источника света выражается значениями интенсивности I для соответствующих цветовых компонент.
Алгебра векторов
Здесь уместно сделать небольшое отступление от темы. Рассмотрим элементы алгебры векторов. Вектором называется отрезок прямой, соединяющий некоторые точки пространства А и В. Направление вектора — от начальной точки А к конечной точке В. Радиус-вектор R — это вектор, с начальной точкой в центре координат. Координатами радиус-вектора являются координаты конечной точки (рис. 4.31). Длина радиус-вектора часто называется модулем, обозначается как R|и вычисляется следующим образом:
Единичный вектор — это вектор, длина которого равна единице. Перечислим основные операции над векторами.
1. Умножение вектора на число X = Va. Результат — вектор X, длина которого в а раз больше вектора V. Если число а положительно, то направление вектора X совпадает с вектором V. При а