Вектор магнитной индукции центре кольца

Вектор магнитной индукции центре кольца

На рисунке изображено проволочное кольцо, по которому протекает постоянный электрический ток I. Кольцо лежит в плоскости рисунка. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор магнитной индукции, создаваемой этим током в центре O кольца? Ответ запишите словом (словами).

Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Мысленно проделав указанные действия, получаем, что в точке O вектор магнитной индукции направлен к наблюдателю.

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Магнитное поле кругового тока

Вы будете перенаправлены на Автор24

Французские ученые Ж. Био и Ф. Савар изучали магнитные поля, создаваемые постоянными токами разной формы. Результаты их работы обобщил известный математик и физик П. Лаплас.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Применение закона Био – Савара – Лапласа к вычислению магнитного поля кругового тока

Закон Био-Савара–Лапласа описывает порождение магнитного поля током $I$ на элементе проводника длиной $dl$ в некоторой точке пространства ($mu$ — магнитная проницаемость вещества в котором локализовано поле):

где $d vec l ⃗$ — вектор, длина которого равна длине элемента проводника $dl$, направленный по току; $vec r$ – радиус-вектор, который проведен от элемента $dl$ в точку, в которой исследуется магнитное поле. Поскольку в правой части формулы (1) находится векторное произведение, очевидно, что индукция элементарного магнитного поля будет направлена перпендикулярно плоскости, в которой находятся векторы $vec r$ и $vec l$ и при этом является касательной к силовой линии поля.

Величину вектора $vec$ из выражения (1) найдем как:

где $ alpha $– угол между векторами $vec r$ и $vec l$ .

Конкретное направление $vec$ находят по правилу буравчика (правилу правой руки):

Если правый винт вращать так, что его поступательное движение будет совпадать с направлением течения тока в избранном элементе, то вращение его головки укажет направление $vec$.

Магнитные поля подчиняются принципу суперпозиции:

Суммарную магнитную индукцию поля, создаваемого несколькими источниками, находят как геометрическую сумму векторов магнитной индукции отдельных полей:

$vec=sumlimits_^N vec_ left( 3 right). $

Если распределение токов можно считать непрерывным, то принцип суперпозиции можно записать:

Вычисление магнитной индукции поля с применением закона Био-Савара-Лапласа довольно сложная процедура. Но при существовании определенной симметрии в распределении токов, используя, рассмотренный нами закон и принцип суперпозиции, рассчитать конкретные поля просто. В любом случае следует придерживаться следующей схемы действий:

Готовые работы на аналогичную тему

  1. Выделить на проводнике с током элементарный отрезок $dl$.
  2. Записать для исследуемой точки поля закон Био – Савара – Лапласа.
  3. Определить направление элементарного поля $vec$ в избранной точке.
  4. Воспользоваться принципом суперпозиции для магнитных полей (учесть, что суммируются векторы).

Видео:Взаимодействие проводящего кольца с электромагнитомСкачать

Взаимодействие проводящего кольца с электромагнитом

Магнитное поле кругового тока в его центре

Рисунок 1. Магнитное поле кругового тока в его центре. Автор24 — интернет-биржа студенческих работ

Рассмотрим круговой проводник, по которому течет постоянный ток $I$ (рис.1). Выделим на этом проводнике элемент $dl$, который можно считать прямолинейным. Если перейти к другому элементу этого же тока, затем к третьему и так далее, применить правило правого винта, то очевидно, что все магнитные поля, созданные этими элементами в центре, направлены вдоль одной прямой, перпендикуляру к плоскости кольца. Это означает, применяя принцип суперпозиции, мы векторное сложение заменим алгебраическим.

Запишем закон Био-Савара-Лапласа для модуля вектора индукции поля, создаваемого элементом d$l_1$:

Из рис.1 мы видим:

  1. что расстояние от элементарного тока до центра витка равно его радиусу ($R$) и будет одинаковым для всех элементов на этом витке,
  2. элемент $dl$ (как и все остальные элементы) будут нормальны к радиус-вектору $vec r$.

Учитывая сказанное выражение (5) представим в виде:

Обезличивая витки с током, положим далее $dl_1=dl$.

Поскольку наш ток является непрерывным, то для нахождения полного поля в его центре, мы проинтегрируем (6), имеем:

$L=2πR$ — длина окружности витка.

Индукция магнитного поля кругового тока на его оси

Найдем индукцию магнитного поля на оси кругового тока, если ток, текущий по нему равен $I$, радиус витка — $R$ (рис.2).

Рисунок 2. Индукция магнитного поля кругового тока на его оси. Автор24 — интернет-биржа студенческих работ

Как основу для выполнения поставленной задачи возьмем закон Био-Савара-Лапласа (1), где из рис.2 мы видим, что:

$dvectimes vec=dvectimes vec+dvectimes vec(9).$

Используя принцип суперпозиции закон (1) для нашего тока и формулы (8-9) запишем:

В выражении (10) при записи интеграла, мы учли, что величина вектора $vec$ не изменяется. Кроме этого вектор $vec h$, определяющий положение точки, в которой мы ищем поле, не изменяется при движении по нашему контуру, поэтому:

$ointlimits_L <dvectimes vec> =(ointlimits_L <dvec)timesvec> =0, left( 11 right),$

так как ( $ointlimits_L <dvec)=0.>$

Вычислим интеграл: $ointlimits_L <dvectimes vec.>$ Введем единичный вектор ($vec n$), нормальный к плоскости витка с током.

$ointlimits_L <dvectimes vec=ointlimits_L <vecRdl=vecR>> ointlimits_L <dl=vecR> 2pi R=2pi R^vecleft( 12 right)$.

Подставляем результаты интегрирования из (12) в (10), имеем:

где при записи окончательного результата мы учли, что:

Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Кольца Гельмгольца

Кольцами Гельмгольца считают пару проводников в виде колец одного радиуса, расположенных в параллельных плоскостях (рис.3) на одной оси. Расстояние между плоскостями колец равно их радиусу.

Рисунок 3. Кольца Гельмгольца. Автор24 — интернет-биржа студенческих работ

Рассмотрим магнитное поле на оси этих колец.

Декартову систему координат разместим так, что ее начало совпадает с центром нижнего кольца с током. Ось Z нашей системы будет направлена по оси колец (рис.3).

Запишем индукцию магнитного поля в точке с координатой $z$ на оси колец. Используем формулу (13):

Исследуем полученное поле. Считается, что магнитное поле на оси колец Гельмгольца на посередине между ними является однородным.

Неоднородность в первом приближении характеризуют первой производной:

Если $z=fracquad$ , подставим в (15), имеем:

По условию для колец Гельмгольца, имеем: $d=R.$

На середине их общей оси ($z=frac)$, получаем:

Равенство нулю второй производной от $B_z$ по координате $z$, показывает, что в на середине оси колец магнитное поле является однородным с высокой степенью точности.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 28 03 2022

Видео:Правило Ленца. ФизикаСкачать

Правило Ленца. Физика

Вектор магнитной индукции центре кольца

Через центр железного кольца перпендикулярно к его плоскости проходит длинный прямолинейный провод, по которому течет ток I = 25 А. Кольцо имеет четырехугольное сечение (рис. 56), размеры которого l1 = 18 мм, l2 = 22 мм и h = 5 мм. Считая приближенно, что в любой точке сечения кольца индукция одинакова и равна индукции на средней линии кольца, найти магнитный поток Ф, пронизывающий площадь сечения кольца.

Дано:

h = 5 мм = 5·10 -3 м

Решение:

Поток вектора магнитной индукции

Напряженность поля бесконечно длинного провода на средней линии кольца

По графику (стр. 370 Волькенштейн В.С. Сборник задач …) для значения Н находим соответствующее значение В.

Из связи магнитной индукции и напряженности магнитного поля

🎬 Видео

Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | Инфоурок

Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Магнитное поле. Вектор магнитной индукцииСкачать

Магнитное поле. Вектор магнитной индукции

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

14. Вектор магнитной индукции. Правило правого винта.Скачать

14. Вектор магнитной индукции. Правило правого винта.

МАГНИТНАЯ ИНДУКЦИЯ класс правило ЛенцаСкачать

МАГНИТНАЯ ИНДУКЦИЯ класс правило Ленца

Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полей

Поле заряженного кольцаСкачать

Поле заряженного кольца

Привередливое кольцо и магнит. Почему отталкивается?Скачать

Привередливое кольцо и магнит. Почему отталкивается?

Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон

Электромагнитная индукция за 1 минутуСкачать

Электромагнитная индукция за 1 минуту

Галилео. Эксперимент. Электромагнитная индукцияСкачать

Галилео. Эксперимент. Электромагнитная индукция

Физика - Магнитное полеСкачать

Физика - Магнитное поле
Поделиться или сохранить к себе: