Видео:№763. В треугольнике АВС АВ=6, ВС=8, ∠B=90°. Найдите: а) |ВА|-|ВС| и |ВА- ВС|;Скачать
В треугольнике abc даны векторы
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Скалярное произведение векторов
О чем эта статья:
11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Видео:№767. Дан треугольник ABC. Выразите через векторы а=АВ и b=АС следующие векторы:Скачать
Основные определения
Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.
Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.
Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.
Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.
Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.
Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.
Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.
Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать
Угол между векторами
Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=
2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.
3. Если векторы направлены в разные стороны, тогда угол между ними 180°.
Также векторы могут образовывать тупой угол. Это выглядит так:
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Скалярное произведение векторов
Определение скалярного произведения можно сформулировать двумя способами:
Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.
Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:
→a * →b = →|a| * →|b| * cosα
Алгебраическая интерпретация.
Что важно запомнить про геометрическую интерпретацию скалярного произведения:
Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0.
Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα
Видео:№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторыСкачать
Скалярное произведение в координатах
Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.
То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by
А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz
Докажем это определение:
Сначала докажем равенства
для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.
Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)
Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
то последнее равенство можно переписать так:
а по первому определению скалярного произведения имеем
Вспомнив формулу вычисления длины вектора по координатам, получаем
Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!
Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать
Формулы скалярного произведения векторов заданных координатами
Формула скалярного произведения векторов для плоских задач
В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:
a * b = ax * bx + ay * by
Формула скалярного произведения векторов для пространственных задач
В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:
a * b = ax * bx + ay * by + az * bz
Формула скалярного произведения n-мерных векторов
В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:
Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.
Скалярное произведение вектора самого на себя равно квадрату его модуля:
Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:
Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:
(→a + →b) * →c = →a * →c + →b * →c
Сочетательный закон для скалярного произведения:
(k * →a) * →b = k * (→a * →b)
Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:
a ≠ 0, b ≠ 0, a * b = 0 a ┴ b
Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.
Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)
По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.
Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.
Аналогично доказываются остальные свойства скалярного произведения.
Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,
Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.
По свойству дистрибутивности скалярного произведения имеем
Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:
В силу свойства коммутативности последнее выражение примет вид
Итак, после применения свойств скалярного произведения имеем
Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:
Пример 4.
В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.
Введем систему координат.
Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.
Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
Найдем координаты векторов →AB1 и →BC1:
Найдем длины векторов →AB1 и →BC1:
Найдем скалярное произведение векторов →AB1 и →BC1:
б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).
а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно
б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)
Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.
Обратите внимание на два существенных момента:
В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.
Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.
По условию чертеж выполнять не требуется, но для удобства можно сделать:
Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.
Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).
Вычислим скалярное произведение:
Вычислим длины векторов:
Найдем косинус угла:
Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:
Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.
Найдём сам угол:
Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.
Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°
Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.
А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.
Видео:Задача о векторах, построенных на медиане, биссектрисе и высоте треугольникаСкачать
Видео:егэ векторы решу егэ все задания №2 профильСкачать
В треугольнике АВС известно, что АВ = ВС, угол АВС = 144 грудуса?
В треугольнике АВС известно, что АВ = ВС, угол АВС = 144 грудуса.
Найдите угол ВСА.
Видео:61. Геометрия на ЕГЭ по математике. Задачи на тему "Векторы"Скачать
В равнобедренном треугольнике АВС сторона АС — основание, угол ВСА = 40, угол АВС = 100, ВD — медиана?
В равнобедренном треугольнике АВС сторона АС — основание, угол ВСА = 40, угол АВС = 100, ВD — медиана.
Найдите углы треугольника АВD.
В треугольнике АВС известно, что АВ = ВС, (угол)АВС = 106?
В треугольнике АВС известно, что АВ = ВС, (угол)АВС = 106.
На странице вопроса В треугольнике АВС укажите векторы : а) АВ + ВС б)СВ + ВА в)СА + АВ г)ВА + СВ д)ВА + СА? из категории Геометрия вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
По формуле V = S * h, где S — площадь основания, h — высота призмы. Здесь h = 5. То естьV = S * 5, V = 5S. Площадь основания треугольника равна по формуле площади правильного треугольника . Здесь а — сторона правильного треугольника. В данном сл..
Просто все время решать задачи. И, например, мы в классе разбираем какую — то задачу, теорему, решаем это, и я пытаюсь не выучить решение задачи, а понять, как она решается. Всякие определения и теоремы нужно конечно учить, но также важно не просто..
На этой странице находится ответ на вопрос Вершины треугольника АВС имеют координаты А( — 1, 2, 3) В(1, 0, 4) С(3, — 2, 1)?, из категории Геометрия, соответствующий программе для 10 — 11 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Геометрия. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.
#1). а) да ; угол СЕМ = 60° (т. К. 180° — 90° — 30° = 60°) б) да ; угол АСМ = 110° (т. К. 180° — 40° — 30° = 110°) в) да ; угол АСЕ = 20° (т. К. АЕС = 180° — 60° = 120° ; значит АСЕ = 180° — 120° — 40° = 20°) г) да ; угол СМВ = 40° (т. К. 180° — ..
У нас есть число 8 надо прибавить прибавить это знак + получается 8 + разность это знак — получается 12 — 3 8 + 12 — 3 но в задание не говорится 8 + 12 значит 12 — 3 нужно взять в скобки если числа есть в скобках их нужно решить первыми и ответ приме..
В треугольнике АВС известно, что АВ = ВС, угол АВС = 144 грудуса?
В треугольнике АВС известно, что АВ = ВС, угол АВС = 144 грудуса.
Найдите угол ВСА.
В равнобедренном треугольнике АВС сторона АС — основание, угол ВСА = 40, угол АВС = 100, ВD — медиана?
В равнобедренном треугольнике АВС сторона АС — основание, угол ВСА = 40, угол АВС = 100, ВD — медиана.
Найдите углы треугольника АВD.
В треугольнике АВС известно, что АВ = ВС, (угол)АВС = 106?
В треугольнике АВС известно, что АВ = ВС, (угол)АВС = 106.
На странице вопроса В треугольнике АВС укажите векторы : а) АВ + ВС б)СВ + ВА в)СА + АВ г)ВА + СВ д)ВА + СА? из категории Геометрия вы найдете ответ для уровня учащихся 5 — 9 классов. Если полученный ответ не устраивает и нужно расшить круг поиска, используйте удобную поисковую систему сайта. Можно также ознакомиться с похожими вопросами и ответами других пользователей в этой же категории или создать новый вопрос. Возможно, вам будет полезной информация, оставленная пользователями в комментариях, где можно обсудить тему с помощью обратной связи.
Задача 19162 Треугольник ABC построен на векторах.
Условие
Треугольник ABC построен на векторах vector=5vector
+7vector, vector=vector
+3vector, где |vector
|=3, |vector|=1, угол между vector
и vector = 60 градусов.
Найти: а) длину высоты, опущенной на сторону vector, б) косинус угла между стороной vector и медианой vector