Как начертить треугольник симметричный треугольнику

Осевая и центральная симметрия

Как начертить треугольник симметричный треугольнику

О чем эта статья:

Видео:ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.Скачать

ВПР 6 класс. 12 задание. Фигура симметиичная данной относительно оси.

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Как начертить треугольник симметричный треугольнику

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, имеющие ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии равностороннего треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу и квадрат, и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Как начертить треугольник симметричный треугольнику

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Видео:Построение треугольника, симметричного данному относительно точки, принадлежащей его сторонеСкачать

Построение треугольника, симметричного данному относительно точки, принадлежащей его стороне

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Как начертить треугольник симметричный треугольнику

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

Как начертить треугольник симметричный треугольнику

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

Как начертить треугольник симметричный треугольнику

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

Как начертить треугольник симметричный треугольнику

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Видео:Осевая симметрия, как начертить треугольники симметричноСкачать

Осевая симметрия, как начертить треугольники симметрично

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах.

Как начертить треугольник симметричный треугольнику

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

Как начертить треугольник симметричный треугольнику

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

Как начертить треугольник симметричный треугольнику

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки А1О и B1О, равные отрезкам АО и АB.
  5. Соединяем точки A1 и B1 и получаем отрезок A1B1, симметричный данному.

Видео:8 класс, 9 урок, Осевая и центральная симметрияСкачать

8 класс, 9 урок, Осевая и центральная симметрия

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Как начертить треугольник симметричный треугольнику

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 и N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1N1.

Как начертить треугольник симметричный треугольнику

Подсказка: опустите перпендикуляры из точек N и N1 на прямую MМ1.

Задачка 3. Постройте фигуру, симметричную данной относительно прямой a.

Видео:Осевая симметрия. 6 класс.Скачать

Осевая симметрия. 6 класс.

Осевая симметрия

Осевая симметрия — это симметрия относительно прямой.

Как начертить треугольник симметричный треугольникуПусть дана некоторая прямая g.

Чтобы построить точку, симметричную некоторой точке A относительно прямой g, надо:

Как начертить треугольник симметричный треугольнику1) Провести из точки A к прямой g перпендикуляр AO.

Как начертить треугольник симметричный треугольнику2) На продолжении перпендикуляра с другой стороны от прямой g отложить отрезок OA1, равный отрезку AO: OA1=AO.

Полученная точка A1 симметрична точке A относительно прямой g.

Прямая g называется осью симметрии.

Таким образом, точки A и A1 симметричны относительно прямой g, если эта прямая проходит через середину отрезка AA1 и перпендикулярна к нему.

Если точка A лежит на прямой g, то симметричная ей точка есть сама точка A.

Преобразование фигуры F в фигуру F1, при котором каждая её точка A переходит в точку A1, симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g.

Фигуры F и F1 называются фигурами, симметричными относительно прямой g.

Как начертить треугольник симметричный треугольникуЧтобы построить треугольник, симметричный данному относительно прямой g, достаточно построить точки, симметричные вершинам треугольника, и соединить их отрезками.

Например, треугольники ABC и A1B1C1 симметричны относительно прямой g.

Если преобразование симметрии относительно прямой g переводит фигуру в себя, то такая фигура называется симметричной относительно прямой g, а прямая g называется её осью симметрии.

Симметричная фигура своей осью симметрии делится на две равные половины. Если симметричную фигуру нарисовать на бумаге, вырезать и согнуть по оси симметрии, то эти половинки совпадут.

Примеры фигур, симметричных относительно прямой.

Как начертить треугольник симметричный треугольнику1) Прямоугольник.

Прямоугольник имеет 2 оси симметрии: прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

Как начертить треугольник симметричный треугольнику

Ромб имеет две оси симметрии:

прямые, на которых лежат его диагонали.

3) Квадрат, как ромб и прямоугольник, имеет четыре оси симметрии: прямые, содержащие его диагонали, и прямые, проходящие через точку пересечения диагоналей параллельно сторонам.

Как начертить треугольник симметричный треугольнику

Окружность имеет бесконечное множество осей симметрии:

любая прямая, содержащая диаметр, является осью симметрии окружности.

Прямая также имеет бесконечное множество осей симметрии: любая перпендикулярная ей прямая является для данной прямой осью симметрии.

Как начертить треугольник симметричный треугольнику

Равнобедренная трапеция — фигура, симметричная относительно прямой,перпендикулярной основаниям и проходящей через их середины.

Как начертить треугольник симметричный треугольнику

Равнобедренный треугольник имеет одну ось симметрии:

прямую, проходящую через высоту (медиану, биссектрису), проведённую к основанию.

8) Равносторонний треугольник.

Как начертить треугольник симметричный треугольнику

Равносторонний треугольник имеет три оси симметрии:

прямые, содержащие его высоты (медианы, биссектрисы).

Как начертить треугольник симметричный треугольнику

Угол — фигура, симметричная относительно прямой, содержащей его биссектрису.

Осевая симметрия является движением.

Видео:Симметрия относительно прямой (осевая симметрия). Пример 2Скачать

Симметрия относительно прямой (осевая симметрия). Пример 2

Please wait.

Видео:Как начертить треугольник | 4 способа | Выпуклый многоугольникСкачать

Как начертить треугольник | 4 способа | Выпуклый многоугольник

We are checking your browser. mathvox.ru

Видео:Осевая и центральная симметрия, 6 классСкачать

Осевая и центральная симметрия, 6 класс

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

Видео:Центральная симметрия. 6 класс.Скачать

Центральная симметрия. 6 класс.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6db73dccef5f21bd • Your IP : 85.95.188.35 • Performance & security by Cloudflare

💥 Видео

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемыСкачать

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемы

Ось симметрииСкачать

Ось симметрии

Центральная и осевая симметрии. Геометрия 7 класс.Скачать

Центральная и осевая симметрии.  Геометрия 7 класс.

Симметрия относительно точки (центральная симметрия). Пример 2Скачать

Симметрия относительно точки (центральная симметрия). Пример 2

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)Скачать

Геометрия 8 класс (Урок№7 - Осевая и центральная симметрия.)

Осевая симметрия, 6 классСкачать

Осевая симметрия, 6 класс

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Построение равностронего треугольника.Скачать

Построение равностронего треугольника.

Построения с помощью циркуля и линейки. Равнобедренный и равносторонний треугольникиСкачать

Построения с помощью циркуля и линейки. Равнобедренный и равносторонний треугольники

Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Симметричный треугольникСкачать

Симметричный треугольник
Поделиться или сохранить к себе: