В прямоугольную трапецию вписана окружность диагонали

Свойства прямоугольной трапеции

В данной статье мы расскажем Вам о свойствах прямоугольной трапеции, как обычной, так и той, в которую вписана окружность.

Для начала напомним некоторые основные определения.

В прямоугольную трапецию вписана окружность диагонали

Трапеция – это четырехугольник, имеющий 2 параллельные друг другу стороны, причем 2 другие стороны параллельными не являются.

Прямоугольная трапеция — это такая трапеция, одна из боковых сторон которой перпендикулярна ее основаниям (изображена на рис.).

Средняя линия трапеции – это отрезок, который соединяет середины боковых сторон фигуры (на рис. EF).

Видео:Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

Основные свойства прямоугольной трапеции

  1. Средняя линия EF равна половине суммы ее оснований BC и AD.

В прямоугольную трапецию вписана окружность диагонали

  • Средняя линия EF параллельна основаниям трапеции BC и AD.
  • На одной прямой размещаются:
    В прямоугольную трапецию вписана окружность диагонали
    • точка пересечения (H) диагоналей прямоугольной трапеции AC и BD;
    • точка пересечения (E) продолжений боковых сторон трапеции AB и CD;
    • середины (F и G) оснований трапеции BC и AD.

    Данным свойством обладает как прямоугольная, так и равносторонняя трапеция.

  • Видео:Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

    Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

    Свойства прямоугольной трапеции, в которую вписана окружность

    SABCD = BC * AD

    Узнать подробнее о свойствах трапеции с прямым углом, в которую вписана окружность, а также ознакомиться с доказательствами этих свойств, можно на сайте uznateshe.ru.

    В прямоугольную трапецию вписана окружность диагонали

    Понравилась статья, расскажите о ней друзьям:

    Видео:Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапецииСкачать

    Геометрия В прямоугольную трапецию вписана окружность. Найдите её радиус, если основания трапеции

    Трапеция. Свойства трапеции

    Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

    В прямоугольную трапецию вписана окружность диагонали

    Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
    Если боковые стороны равны, трапеция называется равнобедренной .

    В прямоугольную трапецию вписана окружность диагонали

    Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

    В прямоугольную трапецию вписана окружность диагонали

    Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

    В прямоугольную трапецию вписана окружность диагонали

    Видео:Геометрия В прямоугольную трапецию вписана окружность радиуса 12 см Большая из боковых сторон точкойСкачать

    Геометрия В прямоугольную трапецию вписана окружность радиуса 12 см Большая из боковых сторон точкой

    Свойства трапеции

    1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

    В прямоугольную трапецию вписана окружность диагонали

    2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

    В прямоугольную трапецию вписана окружность диагонали

    3. Треугольники В прямоугольную трапецию вписана окружность диагоналии В прямоугольную трапецию вписана окружность диагонали, образованные отрезками диагоналей и основаниями трапеции, подобны.

    Коэффициент подобия – В прямоугольную трапецию вписана окружность диагонали

    Отношение площадей этих треугольников есть В прямоугольную трапецию вписана окружность диагонали.

    В прямоугольную трапецию вписана окружность диагонали

    4. Треугольники В прямоугольную трапецию вписана окружность диагоналии В прямоугольную трапецию вписана окружность диагонали, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

    В прямоугольную трапецию вписана окружность диагонали

    5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

    В прямоугольную трапецию вписана окружность диагонали

    6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

    В прямоугольную трапецию вписана окружность диагонали

    7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

    В прямоугольную трапецию вписана окружность диагонали

    8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

    В прямоугольную трапецию вписана окружность диагонали

    Видео:Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторонуСкачать

    Геометрия В прямоугольную трапецию вписана окружность. Точка касания делит большую боковую сторону

    Свойства и признаки равнобедренной трапеции

    1. В равнобедренной трапеции углы при любом основании равны.

    В прямоугольную трапецию вписана окружность диагонали

    2. В равнобедренной трапеции длины диагоналей равны.

    3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

    В прямоугольную трапецию вписана окружность диагонали

    4. Около равнобедренной трапеции можно описать окружность.

    5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

    В прямоугольную трапецию вписана окружность диагонали

    Видео:Диагонали трапеции и точка их пересеченияСкачать

    Диагонали трапеции и точка их пересечения

    Вписанная окружность

    Если в трапецию вписана окружность с радиусом В прямоугольную трапецию вписана окружность диагоналии она делит боковую сторону точкой касания на два отрезка — В прямоугольную трапецию вписана окружность диагоналии В прямоугольную трапецию вписана окружность диагонали, то В прямоугольную трапецию вписана окружность диагонали

    В прямоугольную трапецию вписана окружность диагонали

    Видео:ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 классСкачать

    ТРАПЕЦИЯ — Что такое трапеция, Виды Трапеций, Площадь Трапеции // Геометрия 8 класс

    Площадь

    В прямоугольную трапецию вписана окружность диагоналиили В прямоугольную трапецию вписана окружность диагоналигде В прямоугольную трапецию вписана окружность диагонали– средняя линия

    В прямоугольную трапецию вписана окружность диагонали

    Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

    Чтобы не потерять страничку, вы можете сохранить ее у себя:

    Видео:ЕГЭ ВПИСАННАЯ ОКРУЖНОСТЬ В ПРЯМОУГОЛЬНУЮ ТРАПЕЦИЮ | ЗАДНИЙ ХОД В МАТЕМАТИКЕ ИЛИ КАКОЙ ТО ПОДВОХ |Скачать

    ЕГЭ ВПИСАННАЯ ОКРУЖНОСТЬ В ПРЯМОУГОЛЬНУЮ ТРАПЕЦИЮ | ЗАДНИЙ ХОД В МАТЕМАТИКЕ ИЛИ КАКОЙ ТО ПОДВОХ |

    Узнать ещё

    Знание — сила. Познавательная информация

    Видео:Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основанияСкачать

    Геометрия Равнобокая трапеция вписана в окружность, центр которой принадлежит одному из основания

    В прямоугольную трапецию вписана окружность

    Если в условии задачи сказано, что в прямоугольную трапецию вписана окружность, можно использовать следующие свойства.

    В прямоугольную трапецию вписана окружность диагонали

    1. Сумма оснований трапеции равна сумме боковых сторон.

    2. Расстояния от вершины трапеции до точек касания вписанной окружности равны.

    3. Высота прямоугольной трапеции равна ее меньшей боковой стороне и равна диаметру вписанной окружности.

    4. Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.

    5. Если точка касания делит боковую сторону на отрезки m и n, то радиус вписанной окружности равен

    В прямоугольную трапецию вписана окружность диагонали

    И еще два полезных свойства прямоугольной трапеции, в которую вписана окружность:

    1) Четырехугольник, образованный центром вписанной окружности, точками касания и вершиной трапеции — квадрат, сторона которого равна радиусу. (AMOE и BKOM — квадраты со стороной r).

    2) Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований.

    В прямоугольную трапецию вписана окружность диагоналиПлощадь трапеции равна произведению полусуммы ее оснований на высоту:

    В прямоугольную трапецию вписана окружность диагонали

    Обозначим CF=m, FD=n. Поскольку расстояния от вершин до точек касания равны, высота трапеции равна двум радиусам вписанной окружности, а

    💥 Видео

    🔴 В прямоугольной трапеции основания ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

    🔴 В прямоугольной трапеции основания  ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

    Трапеция. Практическая часть - решение задачи. 8 класс.Скачать

    Трапеция. Практическая часть - решение задачи. 8 класс.

    8 класс, 6 урок, ТрапецияСкачать

    8 класс, 6 урок, Трапеция

    В равнобедренную трапецию вписана окружность, средняя линия трапеции 3, диагональ 5. Найти высоту трСкачать

    В равнобедренную трапецию вписана окружность, средняя линия трапеции 3, диагональ 5. Найти высоту тр

    №552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:Скачать

    №552. Диагонали трапеции ABCD с основаниями АВ и CD пересекаются в точке О. Найдите:

    Трапеция в окружности. Задача Шаталова.Скачать

    Трапеция в окружности. Задача Шаталова.

    прямоугольная трапецияСкачать

    прямоугольная трапеция

    Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Геометрия Точка касания окружности, вписанной в прямоугольную трапецию, делит ее меньшее основаниеСкачать

    Геометрия Точка касания окружности, вписанной в прямоугольную трапецию, делит ее меньшее основание

    Трапеция. 8 класс.Скачать

    Трапеция. 8 класс.

    Простая, но очень противная задача на окружности из ЕГЭ | Планиметрия 83 | mathus.ru #егэ2024Скачать

    Простая, но очень противная задача на окружности из ЕГЭ | Планиметрия 83 | mathus.ru #егэ2024
    Поделиться или сохранить к себе: