В окружности проведены 2 хорды расстояние

В окружности проведены 2 хорды расстояние

Видео:№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острыйСкачать

№1035. В окружности проведены хорды АВ и CD, пересекающиеся в точке Е. Найдите острый

Разделы В окружности проведены 2 хорды расстояние

Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать

ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5

Дополнительно

В окружности проведены 2 хорды расстояние

Задача по математике — 3988

В круге на расстоянии 1 от центра даны две взаимно перпендикулярные хорды. Каждая из них равна 6. На какие части одна хорда делит другую?

Задача по математике — 3989

В круге радиуса $R$ даны два взаимно перпендикулярных диаметра. Произвольная точка окружности спроектирована на эти диаметры. Найдите расстояние между проекциями точки.

Задача по математике — 3990

Хорда пересекает диаметр под углом $30^$ и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.

Задача по математике — 3991

Около треугольника $ABC$ описана окружность. Касательная к окружности, проходящая через точку $B$, пересекает прямую $AC$ в точке $M$. Найдите отношение $frac$, если $frac=k$.

Задача по математике — 3992

Докажите, что если четырёхугольник $XYZT$ вписан в окружность и $frac=frac$, то касательные к окружности, проведённые в точках $X$ и $Z$, либо параллельны, либо пересекаются на прямой $YT$.

Задача по математике — 3993

Дана окружность с центром $O$. На продолжении хорды $AB$ за точку $B$ отложен отрезок $BC$, равный радиусу. Через точки $C$ и $O$ проведена секущая $CD$ ($D$ — точка пересечения с окружностью, лежащая вне отрезка $CO$). Докажите, что $angle AOD=3angle ACD$.

Задача по математике — 3994

Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.

Задача по математике — 3995

С помощью циркуля и линейки через данную внутри окружности точку проведите хорду, которая делилась бы этой точкой пополам.

Задача по математике — 3996

Постройте окружность с центром в данной точке на стороне данного острого угла, которая на другой стороне угла отсекала бы хорду данной длины.

Задача по математике — 3997

В данном круге проведены две равные параллельные хорды, расстояние между которыми равно радиусу данного круга. Найдите острый угол между прямыми, соединяющими концы хорд.

Задача по математике — 3998

Из точки, расположенной вне окружности, проведены к окружности две взаимно перпендикулярные касательные. Радиус окружности равен 10. Найдите длину каждой касательной.

Задача по математике — 3999

Дан сектор, равный четверти круга радиуса $R$. Найдите длину касательной, проведённой в середине его дуги до пересечения с продолжением крайних радиусов сектора.

Задача по математике — 4000

В прямой угол вписана окружность. Хорда, соединяющая точки касания, равна 2. Найдите расстояние от центра окружности до этой хорды.

Задача по математике — 4001

$AB$ и $AC$ — касательные к одной окружности, $angle BAC=60^$, длина ломаной $BAC$ равна 1. Найдите расстояние между точками касания $B$ и $C$.

Задача по математике — 4002

Радиусы двух окружностей равны 2 и 4. Их общие внутренние касательные взаимно перпендикулярны. Найдите длину каждой из них.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Как посчитать хорду окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Онлайн калькулятор

В окружности проведены 2 хорды расстояние

Хорда круга – отрезок соединяющий две точки, лежащие на окружности.

Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)

Как посчитать длину хорды (градусы)

Чему равна длина хорды окружности если её радиус ,
а

Как посчитать длину хорды (радианы)

Чему равна длина хорды окружности если её радиус ,
а

Видео:Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Теория

Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?

Формула

Пример

Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Хорда окружности — определение, свойства, теорема

В окружности проведены 2 хорды расстояние

Видео:Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

В окружности проведены 2 хорды расстояние

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

В окружности проведены 2 хорды расстояние

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

В окружности проведены 2 хорды расстояние

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

В окружности проведены 2 хорды расстояние

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

В окружности проведены 2 хорды расстояние

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

В окружности проведены 2 хорды расстояние

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

В окружности проведены 2 хорды расстояние

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Видео:Найдите длину хорды окружности радиусом 13, если расстояние от центра окружности до хорды равно 5.Скачать

Найдите длину хорды окружности радиусом 13, если расстояние от центра окружности до хорды равно 5.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

В окружности проведены 2 хорды расстояние

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

🔥 Видео

№635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.Скачать

№635. Через точку А окружности проведены касательная и хорда, равная радиусу окружности.

Задача на нахождение длины хорды окружностиСкачать

Задача на нахождение длины хорды окружности

Геометрия.Две хорды и окружность.ДиаметрСкачать

Геометрия.Две хорды и окружность.Диаметр

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

№636. Через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиесяСкачать

№636. Через концы хорды АВ, равной радиусу окружности, проведены две касательные, пересекающиеся

Через точку A, лежащую вне окружности, проведены две прямые.Скачать

Через точку A, лежащую вне окружности, проведены две прямые.

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать

Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD

Геометрия В окружности по разные стороны от ее центра проведены две параллельные хорды длиной 16 смСкачать

Геометрия В окружности по разные стороны от ее центра проведены две параллельные хорды длиной 16 см

Геометрия В окружности проведены диаметр AC и хорда AB равная радиусу окружности Найдите углыСкачать

Геометрия В окружности проведены диаметр AC и хорда AB равная радиусу окружности Найдите углы

Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать

Демо ОГЭ по математике. Задание 17. Хорда окружности.
Поделиться или сохранить к себе: