В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

Вопрос по геометрии:

В кубе ABCDA1B1C1D1 в плоскости ABCD найдите прямые параллельные прямой B1C1

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

В кубе в плоскости ABCD B1C1||BC||AD

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Видео:Геометрия Диагонали грани ABCD куба ABCDA1B1C1D1 пересекаются в точке O Найдите угол между прямымиСкачать

Геометрия Диагонали грани ABCD куба ABCDA1B1C1D1 пересекаются в точке O Найдите угол между прямыми

В кубе ABCDA1B1C1D1 укажите плоскость, параллельную плоскости A1BC1 и проходящую через три вершины куба.

Ответ:

Объяснение:

AA₁ = BB₁ и AA₁║BB₁, a BB₁ = CC₁ и BB₁║CC₁ как противоположные стороны квадратов, значит

AA₁║CC₁ и АА₁ = СС₁, значит

АС ║ А₁С₁

Аналогично, A₁D₁ = BC и A₁D₁║BC, значит

A₁B║D₁C

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.

Видео:№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1ССкачать

№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С

Проверочная работа «13 задание ПРОФИЛЬ ЕГЭ математика»

Видео:В кубе ABCDA1B1C1D1 найдите угол между прямыми AD1 и В1D1. Ответ дайте в градусах.Скачать

В кубе ABCDA1B1C1D1 найдите угол между прямыми AD1 и В1D1. Ответ дайте в градусах.

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

ПРОФИЛЬ ЕГЭ математика

1. Дана правильная четырехугольная пирамида SABCD. Плоскость α параллельна прямой АС, проходит через точку В и середину высоты пирамиды.

а) Докажите, что плоскость α делит ребро SD в отношении 2 : 1, считая от точки D.

б) Найдите синус угла между плоскостью α и плоскостью ASC, если угол SAC равен 30°.

2. Боковое ребро правильной треугольной пирамиды SABC равно 6, а косинус угла ASB при вершине боковой грани равен В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1Точка M — середина ребра SC, точка В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1— середина ребра AC.

а) Докажите, что угол между прямыми BM и SA равен углу BMN.

б) Найдите косинус угла между прямыми BM и SA.

3. В основании правильной пирамиды PABCD лежит квадрат ABCD со стороной 9. Сечение пирамиды проходит через вершину В и середину ребра PD перпендикулярно этому ребру.

а) Докажите, что угол наклона бокового ребра пирамиды к её основанию равен 60°.

б) Найдите площадь сечения пирамиды.

4. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

5. В конус, радиус основания которого равен 6, вписан шар радиуса 3.

а) Изобразите осевое сечение комбинации этих тел.

б) Найдите отношение площади полной поверхности конуса к площади поверхности шара.

6. В пирамиде SABC в основании лежит правильный треугольник ABC со стороной В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1 В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1 В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1Точка O — основание высоты пирамиды, проведённой из вершины S.

а) Докажите, что точка O лежит вне треугольника ABC.

б) Найдите объём четырёхугольной пирамиды SABCO.

7. Точка M середина ребра AB правильного тетраэдра DABC.

а) Докажите, что ортогональная проекция точки M на плоскость ACD лежит на медиане AP грани ACD.

б) Найдите угол между прямой DM и плоскостью ACD.

8. Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.

а) Докажите, что прямые CA1 и AB1 перпендикулярны.

б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.

9. Длины всех ребер правильной четырёхугольной пирамиды PABCD с вершиной P равны между собой. Точка M — середина бокового ребра пирамиды AP.

а) Докажите, что плоскость, проходящая через точки B и M и перпендикулярная плоскости BDP, делит высоту пирамиды пополам.

б) Найдите угол между прямой BM и плоскостью BDP.

а) Докажите, что B1KLM — правильная пирамида.

ПРОФИЛЬ ЕГЭ математика

1. Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M — середина BC.

а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.

б) Найдите угол между прямой SA и плоскостью SBC, если AB = 4, BC = 6 и В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

2. В кубе ABCDA1B1C1D1 все рёбра равны 4. На его ребре BB1 отмечена точка K так, что KB = 3. Через точки K и C1 построена плоскость α, параллельная прямой BD1.

б) Найдите угол наклона плоскости α к плоскости грани BB1C1C.

3. В основании четырехугольной пирамиды SАВСD лежит параллелограмм АВСD c центром О. Точка N — середина ребра SC, точка L — середина ребра SA.

а) Докажите, что плоскость BNL делит ребро SD в отношении 1 : 2, считая от вершины S.

б) Найдите угол между плоскостями BNL и АВС, если пирамида правильная, SA = 8, а тангенс угла между боковым ребром и плоскостью основания пирамиды равен В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

4. Основание ABCD призмы В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1— трапеция с основаниями AB = 2CD.

а) Докажите В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1проходит через середину бокового ребра В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

б) Найдите угол между боковым ребром В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1и этой плоскостью, если призма прямая, трапеция ABCD прямоугольная с прямым углом при вершине B, а BC = CD и В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

5. В правильной треугольной пирамиде SABC сторона основания AB равна 9, а боковое ребро SA = 6. На рёбрах AB и SC отмечены точки K и M соответственно, причём AK : KB = SM : MC = 2 : 7. Плоскость α содержит прямую KM и параллельна прямой SA.

а) Докажите, что плоскость α делит ребро SB в отношении 2 : 7, считая от вершины S.

б) Найдите расстояние между прямыми SA и KM.

6. Сторона правильной треугольной призмы ABCA1B1C1 равна 8. Высота этой призмы равна 6.

а) Докажите, что плоскость, содержащая прямую В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1и параллельная прямой В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1делит пополам ребро В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

7. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

8. ABCA 1 B 1 C 1 — правильная призма, сторона AB равна 16. Через точки M и P, лежащие на рёбрах AC и BB1 соответственно, проведена плоскость α, параллельная прямой AB. Сечение призмы этой плоскостью — четырёхугольник, одна сторона которого равна 16, а три другие равны между собой.

а) Докажите что периметр сечения призмы плоскостью α больше 40.

б) Найдите расстояние от точки A до плоскости α, если упомянутый периметр равен 46.

9. В правильной треугольной призме ABCA1B1C1 сторона основания В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1а боковое ребро AA1 = 5.

а) Найдите длину отрезка A1K, где K — середина ребра BC.

10. В основании пирамиды SABCD лежит прямоугольник ABCD со стороной AB = 4 и диагональю BD = 7. Все боковые рёбра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка E, а на ребре AS — точка F так, что SF = BE = 3.

а) Докажите, что плоскость CEF параллельна ребру SB .

б) Плоскость CEF пересекает ребро SD в точке Q. Найдите расстояние от точки Q до плоскости ABC.

ПРОФИЛЬ ЕГЭ математика

б) Найдите угол между плоскостью α и плоскостью ADD1.

2. В правильном тетраэдре MNPQ через биссектрисы NA и QB граней MNP и QNP проведены параллельные плоскости.

а) Найдите отношение суммы объемов отсекаемых от MNPQ тетраэдров к объему MNPQ

б) Найдите расстояние между NA и QB, если ребро тетраэдра равно 1.

а) Докажите, что прямые B1P и QB перпендикулярны.

б) Найдите площадь сечения куба плоскостью, проходящей через точку P и перпендикулярной прямой BQ, если ребро куба равно 10.

4. В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки А и В, а на окружности другого основания — точки В1 и С1, причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

5. Дана треугольная пирамида DABC, точки M, N, P и Q лежат на рёбрах AB, BC, AD, CD, причём AM : MB = CN : NB = 3 : 1. Точки P и Q — середины рёбер DA и DC соответственно.

а) Докажите, что точки P, Q, M и N лежат в одной плоскости.

б) Найдите отношение многоугольников на которые делит плоскость PQM пирамиду.

6. В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 12 и В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1Длины боковых рёбер пирамиды SA = 5, SB = 13, SD = 10.

а) Докажите, что SA — высота пирамиды.

б) Найдите расстояние от вершины A до плоскости SBC.

7. а) Дан прямоугольный параллелепипед В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1Докажите, что все грани тетраэдра В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1— равные треугольники (тетраэдр, обладающий таким свойством, называют равногранным).

8. В правильной треугольной призме ABCA1B1C1 все рёбра равны 1.

а) Докажите, что прямая AB1 параллельна прямой, проходящей через середины отрезков AC и BC1.

б) Найдите косинус угла между прямыми AB1 и BC1.

9. Прямоугольник ABCD и цилиндр расположены таким образом, что AB — диаметр верхнего основания цилиндра, а CD лежит в плоскости нижнего основания и касается его окружности, при этом плоскость прямоугольника наклонена к плоскости основания цилиндра под углом 60°.

а) Докажите, что ABCD — квадрат.

б) Найдите длину той части отрезка BD, которая находится снаружи цилиндра, если радиус цилиндра равен В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

а) Докажите, что плоскость EFT проходит через вершину D1.

б) Найдите угол между плоскостью EFT и плоскостью BB1C1.

ПРОФИЛЬ ЕГЭ математика

а) В каком отношении плоскость ETD1 делит ребро BB1?

б) Найдите угол между плоскостью ETD1 и плоскостью AA1B1.

2. В основании прямой треугольной призмы ABCA1B1C1 лежит равнобедренный треугольник ABC с основанием AC. Точка K — середина ребра A1B1, а точка M делит ребро AC в отношении AM : MC = 1 : 3.

а) Докажите, что KM перпендикулярно AC.

б) Найдите угол между прямой KM и плоскостью ABC, если AB = 12, AC = 16 и AA1 = 6.

3. В треугольной пирамиде SABC известны боковые рёбра: В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1Основанием высоты этой пирамиды является середина медианы CM треугольника ABC. Эта высота равна 4.

а) Докажите, что треугольник ABC равнобедренный.

б) Найдите объём пирамиды SABC.

4. В основании правильной треугольной призмы ABCA1B1C1лежит треугольник со стороной 6. Высота призмы равна 4. Точка N — середина ребра A1C1.

а) Постройте сечение призмы плоскостью BAN.

б) Найдите периметр этого сечения.

5. В основании MABCD лежит прямоугольник ABCD со сторонами AB = 4 и BC = В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1все боковые ребра пирамиды равны 4. На диагонали BD основания ABCD отмечена точка Е, а на ребрах AM и AB — точка F и G соответственно так, что MF = BE = BG = 3.

а) Докажите, что плоскость GEF проходит через точку C.

б) Найдите длину отрезка, по которому плоскость GEF пересекает грань CMD пирамиды.

6. Длина ребра правильного тетраэдра ABCD равна 1. M — середина ребра BC, L — середина ребра AB.

а) Докажите, что плоскость, параллельная прямой CL и содержащая прямую DM, делит ребро AB в отношении 3 : 1, считая от вершины A.

б) Найдите угол между прямыми DM и CL.

7. Дана пирамида SABC, в которой В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1 В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1

а) Докажите, что ребро SA перпендикулярно ребру BC.

б) Найдите расстояние между ребрами BC и SA.

8. Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.

б) Найдите расстояние от плоскости сечения до центра основания конуса.

9. В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB = 6, а боковое ребро В кубе abcda1b1c1d1 в плоскости abcd найдите прямые параллельные а1б1На рёбрах AB, A1D1 и C1D1 отмечены точки M, N и K соответственно, причём AM = A1N = C1K = 1.

а) Пусть L — точка пересечения плоскости MNK с ребром BC. Докажите, что MNKL — квадрат.

б) Найдите площадь сечения призмы плоскостью MNK.

10. В правильной треугольной пирамиде SABC с вершиной S, все рёбра которой равны 4, точка N — середина ребра AC, точка O центр основания пирамиды, точка P делит отрезок SO в отношении 3 : 1, считая от вершины пирамиды.

а) Докажите, что прямая NP перпендикулярна прямой BS.

б) Найдите расстояние от точки B до прямой NP.

💡 Видео

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.Скачать

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.

Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

№344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое,Скачать

№344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое,

№191. Дан куб ABCDA1B1C1D1. Докажите, что плоскостиСкачать

№191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости

№81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственноСкачать

№81. Изобразите параллелепипед ABCDA1B1C1D1 и отметьте точки М и N соответственно

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Решение задач (находим угол в кубе)Скачать

Решение задач (находим угол в кубе)

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащимиСкачать

№194. Ребро куба равно а. Найдите расстояние между скрещивающимися прямыми, содержащими

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. КубСкачать

Готовимся к ЕГЭ. Стереометрия. Базовые задачи. Угол между прямыми. Куб

№83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей черезСкачать

№83. Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через

№116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1DСкачать

№116. Дан параллелепипед ABCDA1B1C1D1. Докажите, что: а) DC⊥B1C1, и AB⊥A1D

Найти в кубе угол между двумя прямымиСкачать

Найти в кубе угол между двумя прямыми

Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

№19. Стороны АВ и ВС параллелограмма ABCD пересекают плоскость αСкачать

№19. Стороны АВ и ВС параллелограмма ABCD пересекают плоскость α
Поделиться или сохранить к себе: