В данную окружность радиусом 3 см впишите правильный треугольник

В окружность радиуса √3 см вписан правильный треугольник. Найдите: а) сторону треугольника; б) радиус окружности, вписанной в данный треугольник.
Содержание
  1. Ваш ответ
  2. решение вопроса
  3. Похожие вопросы
  4. Треугольник вписанный в окружность
  5. Определение
  6. Формулы
  7. Радиус вписанной окружности в треугольник
  8. Радиус описанной окружности около треугольника
  9. Площадь треугольника
  10. Периметр треугольника
  11. Сторона треугольника
  12. Средняя линия треугольника
  13. Высота треугольника
  14. Свойства
  15. Доказательство
  16. Как найти площадь равностороннего треугольника
  17. Онлайн калькулятор
  18. Как посчитать площадь равностороннего треугольника зная длину равных сторон
  19. Формула
  20. Пример
  21. Как посчитать площадь равностороннего треугольника зная его высоту
  22. Формула
  23. Пример
  24. Как посчитать площадь равностороннего треугольника зная радиус описанной окружности
  25. Формула
  26. Пример
  27. Как посчитать площадь равностороннего треугольника зная радиус вписанной окружности
  28. Формула
  29. Пример
  30. Как посчитать площадь равностороннего треугольника зная его периметр
  31. Формула
  32. Пример
  33. 🎥 Видео

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Ваш ответ

Видео:Как поделить окружность на 3 равные части. Очень просто. Уроки черчения.Скачать

Как  поделить окружность на 3 равные части. Очень просто. Уроки черчения.

решение вопроса

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,029
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Треугольник вписанный в окружность

В данную окружность радиусом 3 см впишите правильный треугольник

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 класс

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

В данную окружность радиусом 3 см впишите правильный треугольник

Видео:Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Видео:Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружностьСкачать

Как разделить окружность на 3 равные части или как вписать равнобедренный треугольник в окружность

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

В данную окружность радиусом 3 см впишите правильный треугольник

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Видео:9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Как найти площадь равностороннего треугольника

Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Онлайн калькулятор

В данную окружность радиусом 3 см впишите правильный треугольник

Чтобы вычислить площадь равностороннего треугольника вам нужно знать следующие параметры (либо-либо):

  • длину равных сторон (a)
  • высоту (h)
  • радиус описанной окружности (R)
  • радиус вписанной окружности (r)
  • периметр треугольника (P)

Введите их в соответствующие поля и узнаете площадь равностороннего треугольника (S).

Как посчитать площадь равностороннего треугольника зная длину равных сторон

Чему равна площадь равностороннего треугольника если длина стороны ?

Какова площадь равностороннего треугольника (S) если известна длина сторон (a)?

Формула

Пример

Если сторона a = 2 см, то:

S = √3 /4 ⋅ 2² = 1.732 /4 ⋅ 4 ≈ 1.732 см 2

Как посчитать площадь равностороннего треугольника зная его высоту

Чему равна площадь равностороннего треугольника если его ?

Какова площадь равностороннего треугольника (S) если известна его высота (h)?

Формула

Пример

Если высота h = 3 см, то:

Как посчитать площадь равностороннего треугольника зная радиус описанной окружности

Чему равна площадь равностороннего треугольника если радиус описанной окружности ?

Какова площадь равностороннего треугольника (S) если известен радиус описанной окружности (R)?

Формула

Пример

Если радиус описанной окружности R = 4 см, то:

S = 3 ⋅ √3 /4 ⋅ 4² = 3 ⋅ 1.732 /4 ⋅ 16 = 1.299 ⋅ 16 ≈ 20.784 см 2

Как посчитать площадь равностороннего треугольника зная радиус вписанной окружности

Чему равна площадь равностороннего треугольника если радиус вписанной окружности ?

Какова площадь равностороннего треугольника (S) если известен радиус вписанной окружности (r)?

Формула

Пример

Если радиус вписанной окружности r = 1 см, то:

S = 3⋅ √ 3 ⋅ 1² = 3 ⋅ 1.732 ⋅ 1 ≈ 5.196 см 2

Как посчитать площадь равностороннего треугольника зная его периметр

Чему равна площадь равностороннего треугольника если его периметр ?

Какова площадь равностороннего треугольника (S) если известен его периметр (P)?

Формула

Пример

Если периметр P = 8 см, то:

S = √3 /36 ⋅ 8² = 1.732 /36 ⋅ 64 ≈ 3 см 2

🎥 Видео

Геометрия - Построение правильного треугольникаСкачать

Геометрия - Построение правильного треугольника

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать

Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольника

Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Радиус и диаметрСкачать

Радиус и диаметр

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?Скачать

РАДИУС ОКРУЖНОСТЬ ДИАМЕТР КРУГ / 3 КЛАСС МАТЕМАТИКА. ЧТО ТАКОЕ ОКРУЖНОСТЬ ? ЧТО ТАКОЕ РАДИУС ?

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)
Поделиться или сохранить к себе: