Остроугольный треугольник как найти стороны

Остроугольный треугольник — виды, свойства и признаки

Одна из центральных тем на уроках геометрии – остроугольный треугольник, составная часть своих более сложных аналогов и иных тригонометрических форм.

Азы изучения точной науки начинаются с рассмотрения уникальной комбинации из трех сторон и острых углов.

Содержание
  1. Виды, признаки и свойства остроугольных треугольников
  2. Равносторонний треугольник
  3. Разносторонний треугольник
  4. Равнобедренный остроугольный треугольник
  5. Равнобедренный тупоугольный треугольник
  6. Треугольник. Формулы и свойства треугольников.
  7. Типы треугольников
  8. По величине углов
  9. По числу равных сторон
  10. Вершины углы и стороны треугольника
  11. Свойства углов и сторон треугольника
  12. Теорема синусов
  13. Теорема косинусов
  14. Теорема о проекциях
  15. Формулы для вычисления длин сторон треугольника
  16. Медианы треугольника
  17. Свойства медиан треугольника:
  18. Формулы медиан треугольника
  19. Биссектрисы треугольника
  20. Свойства биссектрис треугольника:
  21. Формулы биссектрис треугольника
  22. Высоты треугольника
  23. Свойства высот треугольника
  24. Формулы высот треугольника
  25. Окружность вписанная в треугольник
  26. Свойства окружности вписанной в треугольник
  27. Формулы радиуса окружности вписанной в треугольник
  28. Окружность описанная вокруг треугольника
  29. Свойства окружности описанной вокруг треугольника
  30. Формулы радиуса окружности описанной вокруг треугольника
  31. Связь между вписанной и описанной окружностями треугольника
  32. Средняя линия треугольника
  33. Свойства средней линии треугольника
  34. Периметр треугольника
  35. Формулы площади треугольника
  36. Формула Герона
  37. Равенство треугольников
  38. Признаки равенства треугольников
  39. Первый признак равенства треугольников — по двум сторонам и углу между ними
  40. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  41. Третий признак равенства треугольников — по трем сторонам
  42. Подобие треугольников
  43. Признаки подобия треугольников
  44. Первый признак подобия треугольников
  45. Второй признак подобия треугольников
  46. Третий признак подобия треугольников
  47. Треугольник
  48. Типы треугольников
  49. По величине углов
  50. Остроугольный треугольник
  51. Тупоугольный треугольник
  52. Прямоугольный треугольник
  53. По числу равных сторон
  54. Разносторонний треугольник
  55. Равнобедренный треугольник
  56. Равносторонний (правильный) треугольник
  57. Вершины, углы и стороны треугольника
  58. Свойства углов и сторон треугольника
  59. Сумма углов треугольника равна 180°
  60. В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы
  61. Сумма длин двух любых сторон треугольника больше длины оставшейся стороны
  62. Теорема синусов
  63. Теорема косинусов
  64. Теорема о проекциях
  65. Формулы для вычисления длин сторон треугольника
  66. Формулы сторон через медианы
  67. Медианы треугольника
  68. Свойства медиан треугольника
  69. Формулы медиан треугольника
  70. Формулы медиан треугольника через стороны
  71. Биссектрисы треугольника
  72. Свойства биссектрис треугольника
  73. Формулы биссектрис треугольника
  74. Формулы биссектрис треугольника через стороны
  75. Формулы биссектрис треугольника через две стороны и угол
  76. Высоты треугольника
  77. Свойства высот треугольника
  78. Формулы высот треугольника
  79. Формулы высот треугольника через сторону и угол
  80. Формулы высот треугольника через сторону и площадь
  81. Формулы высот треугольника через две стороны и радиус описанной окружности
  82. Окружность вписанная в треугольник
  83. Свойства окружности вписанной в треугольник
  84. Формулы радиуса окружности вписанной в треугольник
  85. Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру
  86. Радиус вписанной в треугольник окружности через три стороны
  87. Формулы высот треугольника через две стороны и радиус описанной окружности
  88. Окружность описанная вокруг треугольника
  89. Свойства окружности описанной вокруг треугольника
  90. Свойства углов
  91. Формулы радиуса окружности описанной вокруг треугольника
  92. Радиус описанной окружности через три стороны и площадь
  93. Радиус описанной окружности через площадь и три угла
  94. Радиус описанной окружности через сторону и противоположный угол (теорема синусов)
  95. Связь между вписанной и описанной окружностями треугольника
  96. Формулы радиуса окружности описанной вокруг треугольника
  97. Радиус описанной окружности через площадь и три угла
  98. Средняя линия треугольника
  99. Свойства средней линии треугольника
  100. Признаки
  101. Периметр треугольника
  102. Формулы площади треугольника
  103. Формула площади треугольника по стороне и высоте
  104. Формула площади треугольника по трем сторонам
  105. Формула площади треугольника по двум сторонам и углу между ними
  106. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  107. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
  108. Равенство треугольников
  109. Определение
  110. Свойства
  111. Признаки равенства треугольников
  112. По двум сторонам и углу между ними
  113. По стороне и двум прилежащим углам
  114. По трем сторонам
  115. Подобие треугольников
  116. Определение
  117. Признаки подобия треугольников
  118. Свойства
  119. Прямоугольные треугольники
  120. Свойства прямоугольного треугольника
  121. Признаки равенства прямоугольных треугольников
  122. Свойства

Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать

Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.

Виды, признаки и свойства остроугольных треугольников

Трехсторонние фигуры разделяются на множество подвидов и категорий.

Общая классификация по наибольшему углу делит их на 3 группы:

Остроугольный треугольник как найти стороны

Они располагают как общими для формы с тремя сторонами характеристиками, так и специфическими признаками.

3 угла, сумма которых равна 180°, (величина каждого меньше 90°) и 3 стороны;

сумма длин любых двух сторон больше оставшейся третьей.

Свойства остроугольной фигуры определяются вспомогательными геометрическими линиями, всегда находящимися внутри него:

1. Биссектрисы, делящие углы пополам, являются центром, вокруг которого можно нарисовать вписанную окружность.

Остроугольный треугольник как найти стороны

2. Высоты пересекаются в одной точке, образуя ортоцентр.

Остроугольный треугольник как найти стороны

3. Медианы в точке пересечения пролегают в пропорции 2:1 (2 трети до центра и 1 треть после).

Остроугольный треугольник как найти стороны

Уникальные особенности зависят от разновидностей фигуры.

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Равносторонний треугольник

Остроугольный треугольник как найти стороны

«Идеальный» правильный треугольник, облегчающий решение задач. Определение, форма и свойства данной геометрической формы исходят из названия — все углы равны 60°, а стороны равны друг другу.

Полное равенство придает и другую особенность: медианы, биссектрисы и высоты полностью совпадают.

Остроугольный треугольник как найти стороны

Видео:7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольники

Разносторонний треугольник

Остроугольный треугольник как найти стороны

Наиболее часто встречаемый на чертежах в геометрии вариант, один из самых трудноразрешимых видов. Разносторонними бывают и прямоугольные, и тупоугольные фигуры.

Уникальных отличий не имеет, только общие:

все параметры имеют разные значения;

совпадений между вспомогательными линиями нет.

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Равнобедренный остроугольный треугольник

Остроугольный треугольник как найти стороны

Здесь при основании (стороне, не равной остальным) находятся равные друг другу 2 стороны и 2 угла. Выглядит как вытянутый в одну сторону равносторонний треугольник.

проведенная к основанию линия – и биссектриса, и высота, и медиана;

вспомогательные линии из крайних точек при основании совпадают.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Равнобедренный тупоугольный треугольник

Остроугольный треугольник как найти стороны

Пусть он и называется равнобедренным, но из-за наличия угла более 90° не является остроугольным и является представителем другой группы.

Начертить его сложнее (рисунок следует начинать с основания и 2 острых углов и уже после создавать тупой), но процесс решения и изучения прост.

Отличие у него одно – точка пересечения двух высот, проведенных от углов при основании, выходит за периметр треугольника. Чтобы ее обозначить, необходимо нарисовать «продолжения» равнобедренных линий. Все остальные свойства совпадают.

В ключевых и фундаментальных разделах математики именно треугольник является основой для доказательства многих теорем и помощью в решении множества задач. Твердое знание его свойств откроет путь к успехам в расчетах, вычислениях, оформлении чертежей и фото в проектных работах.

Видео:32. Остроугольный, прямоугольный и тупоугольный треугольникиСкачать

32. Остроугольный, прямоугольный и тупоугольный треугольники

Треугольник. Формулы и свойства треугольников.

Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать

Геометрия 7 класс (Урок№9 - Треугольник.)

Типы треугольников

По величине углов

Остроугольный треугольник как найти стороны

Остроугольный треугольник как найти стороны

Остроугольный треугольник как найти стороны

По числу равных сторон

Остроугольный треугольник как найти стороны

Остроугольный треугольник как найти стороны

Остроугольный треугольник как найти стороны

Видео:Виды треугольниковСкачать

Виды треугольников

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Остроугольный треугольник как найти стороны

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Медианы треугольника

Остроугольный треугольник как найти стороны

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

Биссектрисы треугольника

Остроугольный треугольник как найти стороны

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Высоты треугольника

Остроугольный треугольник как найти стороны

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Треугольники: остро-, тупо- и прямоугольныеСкачать

Треугольники: остро-, тупо- и прямоугольные

Окружность вписанная в треугольник

Остроугольный треугольник как найти стороны

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

Окружность описанная вокруг треугольника

Остроугольный треугольник как найти стороны

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Связь между вписанной и описанной окружностями треугольника

Видео:№1031. Выясните, является ли треугольник остроугольным, прямоугольным или тупоугольнымСкачать

№1031. Выясните, является ли треугольник остроугольным, прямоугольным или тупоугольным

Средняя линия треугольника

Свойства средней линии треугольника

Остроугольный треугольник как найти стороны

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Геометрия Установите, остроугольным, прямоугольным или тупоугольным является треугольник стороныСкачать

Геометрия Установите, остроугольным, прямоугольным или тупоугольным является треугольник стороны

Периметр треугольника

Остроугольный треугольник как найти стороны

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Формулы площади треугольника

Остроугольный треугольник как найти стороны

Формула Герона

S =a · b · с
4R

Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Подобие треугольников

Остроугольный треугольник как найти стороны

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Определить вид треугольника по сторонам. 9 классСкачать

Определить вид треугольника по сторонам. 9 класс

Треугольник

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

Типы треугольников

Остроугольный треугольник как найти стороны

По величине углов

Остроугольный треугольник

Остроугольный треугольник как найти стороны

— все углы треугольника острые.

Тупоугольный треугольник

Остроугольный треугольник как найти стороны

— один из углов треугольника тупой (больше 90°).

Прямоугольный треугольник

Остроугольный треугольник как найти стороны

— один из углов треугольника прямой (равен 90°).

По числу равных сторон

Разносторонний треугольник

Остроугольный треугольник как найти стороны

— все три стороны не равны.

Равнобедренный треугольник

Остроугольный треугольник как найти стороны

— две стороны равны.

Равносторонний (правильный) треугольник

Остроугольный треугольник как найти стороны

— все три стороны равны.

Вершины, углы и стороны треугольника

Остроугольный треугольник как найти стороны

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы

  • если α > β , тогда a > b
  • если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a sin α = b sin β = c sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 b c · cos α
b 2 = a 2 + c 2 — 2 a c · cos β
c 2 = a 2 + b 2 — 2 a b · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β
b = a cos γ + c cos α;
c = a cos β + b cos α;

Формулы для вычисления длин сторон треугольника

Формулы сторон через медианы

a = 2 3 2 m b 2 + m c 2 — m a 2

b = 2 3 2 m a 2 + m c 2 — m b 2

c = 2 3 2 m a 2 + m b 2 — m c 2

Медианы треугольника

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Остроугольный треугольник как найти стороны

Свойства медиан треугольника

  1. Медианы треугольника пересекаются в одной точке. Точка пересечения медиан называется центроидом.

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO OD = BO OE = CO OF = 2 1

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников

S ∆AOF = S ∆AOE = S ∆BOF = S ∆BOD = S ∆COD = S ∆COE

  • Из векторов, образующих медианы, можно составить треугольник
  • Формулы медиан треугольника

    Формулы медиан треугольника через стороны

    m a = 1 2 2 b 2 + 2 c 2 — a 2

    m b = 1 2 2 a 2 + 2 c 2 — b 2

    m c = 1 2 2 a 2 + 2 b 2 — c 2

    Биссектрисы треугольника

    Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

    Остроугольный треугольник как найти стороны

    Свойства биссектрис треугольника

    1. Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.

    Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
    AE AB = EC BC

    Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

    Угол между l c и l c ‘ = 90°

  • Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
  • Формулы биссектрис треугольника

    Формулы биссектрис треугольника через стороны

    l a = 2 b c p p — a b + c

    l b = 2 a c p p — b a + c

    l c = 2 a b p p — c a + b

    где p = a + b + c 2 — полупериметр треугольника.

    Формулы биссектрис треугольника через две стороны и угол

    l a = 2 b c cos α 2 b + c

    l b = 2 a c cos β 2 a + c

    l c = 2 a b cos γ 2 a + b

    Высоты треугольника

    Остроугольный треугольник как найти стороны

    Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

    В зависимости от типа треугольника высота может содержаться:

    • внутри треугольника — для остроугольного треугольника;
    • совпадать с его стороной — для катета прямоугольного треугольника;
    • проходить вне треугольника — для острых углов тупоугольного треугольника.

    Свойства высот треугольника

    1. Высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника.

  • Если в треугольнике две высоты равны, то треугольник — равнобедренный.
  • h a : h b : h c = 1 a : 1 b : 1 c = BC : AC : AB

    1 h a : 1 h b : 1 h c = 1 r

    Формулы высот треугольника

    Формулы высот треугольника через сторону и угол

    h a = b sin γ = c sin β

    h b = c sin α = a sin γ

    h c = a sin β = b sin α

    Формулы высот треугольника через сторону и площадь

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Окружность вписанная в треугольник

    Окружность называется вписанной в треугольник, если она касается всех трех его сторон.

    Остроугольный треугольник как найти стороны

    Свойства окружности вписанной в треугольник

    • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
    • В любой треугольник можно вписать окружность, и только одну.

    Формулы радиуса окружности вписанной в треугольник

    Радиус вписанной в треугольник окружности равен отношению площади треугольника к его полупериметру

    Радиус вписанной в треугольник окружности через три стороны

    Формулы высот треугольника через две стороны и радиус описанной окружности

    Окружность описанная вокруг треугольника

    Окружность называется описанной вокруг треугольника, если она содержит все вершины треугльника.

    Остроугольный треугольник как найти стороны

    Свойства окружности описанной вокруг треугольника

    • Центр описанной вокруг треугольника окружности лежит на пересечении серединных перпендикуляров к его сторонам.
    • Вокруг любого треугольника можно описать окружность, и только одну.

    Свойства углов

    Центр описанной окружности лежит внутри остроугольного треугольника, снаружи тупоугольнго треугольника, на середине гипотенузы прямоугольного треугольника.

    Формулы радиуса окружности описанной вокруг треугольника

    Радиус описанной окружности через три стороны и площадь

    Радиус описанной окружности через площадь и три угла

    Радиус описанной окружности через сторону и противоположный угол (теорема синусов)

    Связь между вписанной и описанной окружностями треугольника

    Остроугольный треугольник как найти стороны

    Формулы радиуса окружности описанной вокруг треугольника

    Если d — расстояние между центрами вписанной и описанной окружностей, то

    d 2 = R 2 — 2 R r

    Радиус описанной окружности через площадь и три угла

    Средняя линия треугольника

    Средняя линия треугольника — отрезок, соединяющий середины двух сторон треугольника.

    Остроугольный треугольник как найти стороны

    Свойства средней линии треугольника

    • Любой треугольник имеет три средних линии.
    • Средняя линия треугольника параллельна основанию и равна его половине.
      MN = 1 2 AC ; KN = 1 2 AB ; KM = 1 2 BC

    MN || AC ; KN || AB ; KM || BC

  • Средняя линия отсекает треугольник, подобный данному, площадь которого равна четвёрти площади исходного треугольника.
    S ∆MBN = 1 4 S ∆ABC ; S ∆MAK = 1 4 S ∆ABC ; S ∆NCK = 1 4 S ∆ABC
  • При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
    ∆MBN

    Признаки

    Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

    Периметр треугольника

    Остроугольный треугольник как найти стороны

    Периметр треугольника ∆ABC равен сумме длин его сторон.

    Формулы площади треугольника

    Остроугольный треугольник как найти стороны

    Формула площади треугольника по стороне и высоте

    Остроугольный треугольник как найти стороны

    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

    S = 1 2 a · h a ,
    S = 1 2 b · h b ,
    S = 1 2 c · h c ,

    где a, b, c — стороны треугольника,
    ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

    Формула площади треугольника по трем сторонам

    Остроугольный треугольник как найти стороны

    Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

    S = p p — a p — b p — c ,

    где p — полупериметр треугольника: p = a + b + c 2
    a, b, c — стороны треугольника.

    Формула площади треугольника по двум сторонам и углу между ними

    Остроугольный треугольник как найти стороны

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

    S = 1 2 a · b · sin γ ,
    S = 1 2 b · c · sin α ,
    S = 1 2 a · c · sin β ,

    где a, b, c — стороны треугольника,
    γ — угол между сторонами a и b ,
    α — угол между сторонами b и c ,
    β — угол между сторонами a и c .

    Формула площади треугольника по трем сторонам и радиусу описанной окружности

    a, b, c — стороны треугольника,
    R — радиус описанной окружности.

    Формула площади треугольника по трем сторонам и радиусу вписанной окружности

    Остроугольный треугольник как найти стороны

    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    r — радиус вписанной окружности,
    p — полупериметр треугольника: p = a + b + c 2

    Равенство треугольников

    Остроугольный треугольник как найти стороны

    Определение

    Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

    Свойства

    У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

    Признаки равенства треугольников

    По двум сторонам и углу между ними

    Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

    По стороне и двум прилежащим углам

    Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

    По трем сторонам

    Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

    Подобие треугольников

    Остроугольный треугольник как найти стороны

    Определение

    Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

    ∆MNK => α = α 1 , β = β 1 , γ = γ 1 и AB MN = BC NK = AC MK = k

    где k — коэффициент подобия.

    Признаки подобия треугольников

    1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
    2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
    3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

    S ∆АВС S ∆MNK = k 2

    Прямоугольные треугольники

    Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

    Свойства прямоугольного треугольника

    • Остроугольный треугольник как найти стороны Сумма двух острых углов прямоугольного треугольника равна 90°.
      Сумма углов треугольника равна 180°, а прямой угол равен 90°, поэтому сумма двух острых углов прямоугольного треугольника ∠ 1 + ∠ 2 = 90° .
    • Остроугольный треугольник как найти стороны

    Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

    Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

    Докажем, что BC=2AC.
    Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
    Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

    Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

    Признаки равенства прямоугольных треугольников

    Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

    1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
    2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
    3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
    4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

    Свойства

    Площади подобных треугольников относятся как квадрат коэффициента подобия:

  • Поделиться или сохранить к себе: