п.1. Понятие тригонометрии
Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., — спроектирован с использованием тригонометрии.
Базовым объектом изучения в тригонометрии является угол.
Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.
п.2. Числовая окружность
Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.
Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0). Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0. Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным . |
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90°, –120°, –180°. |
п.3. Градусная и радианная мера угла
Видео:В какой четверти находится точка единичной окружности, полученная при повороте Ро(1;0) на угол...Скачать
Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).
В целом, более обоснованной и естественной для измерения углов является радианная мера.
Найдем радианную меру прямого угла ∠AOB=90°. Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr. Длина дуги AB: \(l_ Тогда радианная мера угла: $$ \angle AOB=\frac |
30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° | 270° | 360° |
\(\frac<\pi><6>\) | \(\frac<\pi><4>\) | \(\frac<\pi><3>\) | \(\frac<\pi><2>\) | \(\frac<2\pi><3>\) | \(\frac<3\pi><4>\) | \(\frac<5\pi><6>\) | \(\pi\) | \(\frac<3\pi><2>\) | \(2\pi\) |
п.4. Свойства точки на числовой окружности
Построим числовую окружность. Обозначим O(0;0), A(1;0)
Каждому действительному числу t на числовой окружности соответствует точка Μ(t). При t=0, M(0)=A. При t>0 двигаемся по окружности против часовой стрелки, описывая дугу ⌒ AM=t. Точка M — искомая. При t Например: |
Отметим на числовой окружности точки, соответствующие \(\frac<\pi><6>,\ \frac<\pi><4>,\ \frac<\pi><2>,\ \frac<2\pi><3>,\ \pi\), а также \(-\frac<\pi><6>,\ -\frac<\pi><4>,\ -\frac<\pi><2>,\ -\frac<2\pi><3>,\ -\pi\) Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности. |
Отметим на числовой окружности точки, соответствующие \(\frac<\pi><6>,\ \frac<13\pi><6>,\ \frac<25\pi><6>\), и \(-\frac<11\pi><6>\). Все четыре точки совпадают, т.к. \begin |
п.5. Интервалы и отрезки на числовой окружности
Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.
Числовой промежуток | Соответствующая дуга числовой окружности |
Отрезок | |
$$ -\frac<\pi> <6>\lt t \lt \frac<\pi> <3>$$ а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\lt t\lt\frac<\pi><3>+2\pi k $$ | |
Интервал | |
$$ -\frac<\pi> <6>\leq t \leq \frac<\pi> <3>$$ а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\leq t\leq\frac<\pi><3>+2\pi k $$ | |
Полуинтервал | |
$$ -\frac<\pi> <6>\leq t \lt\frac<\pi> <3>$$ а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\leq t\lt\frac<\pi><3>+2\pi k $$ |
п.6. Примеры
Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?
Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: \begin
Видео:Как искать точки на тригонометрической окружности.Скачать
Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<\pi><2>;\ \frac<3\pi><4>;\ \frac<7\pi><6>;\ \frac<7\pi><4>\).
Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. \begin |
Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<11\pi><2>;\ 5\pi;\ \frac<17\pi><6>;\ \frac<27\pi><4>\).
Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk — четное количество π), чтобы попасть в промежуток от 0 до 2π. Далее – действуем, как в примере 2. \begin |
Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.
Сравниваем каждое число с границами четвертей: \begin |
\(\frac\pi2\lt 2\lt \pi \Rightarrow \) угол 2 радиана находится во 2-й четверти
\(\pi\lt 4\lt \frac<3\pi> <2>\Rightarrow \) угол 4 радиана находится в 3-й четверти
\(\frac<3\pi><2>\lt 5\lt 2\pi \Rightarrow \) угол 5 радиана находится в 4-й четверти
\(7\gt 2\pi\), отнимаем полный оборот: \(0\lt 7-2\pi\lt \frac\pi2\Rightarrow\) угол 7 радиан находится в 1-й четверти.
Пример 5. Изобразите на числовой окружности множество точек \((k\in\mathbb
$$ \frac<\pi k> <2>$$ | $$ -\frac<\pi><4>+2\pi k $$ |
Четыре базовых точки, через каждые 90° | Две базовых точки, через каждые 180° |
$$ \frac<\pi><3>+\frac<2\pi k> <3>$$ | $$ -\frac<\pi k> <5>$$ |
Три базовых точки, через каждые 120° | Пять базовых точек, через каждые 72° |
Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.
📹 Видео
10 класс, 11 урок, Числовая окружностьСкачать
Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать
Алгебра 10 класс Поворот точки вокруг начала координат ЛекцияСкачать
Как найти координаты точек на тригонометрической окружностиСкачать
10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать
Числовая окружностьСкачать
Алгебра 10 класс (Урок№29 - Радианная мера угла.)Скачать
Уравнение окружности (1)Скачать
стр 15 #1.14 Алгебра 10 класс. Определите, углом какой четверти является уголСкачать
Точки на числовой окружностиСкачать
Алгебра 10 класс. 15 сентября. Числовая окружность #1Скачать
Изобразить область на комплексной плоскостиСкачать
Построение окружности по трём точкам.Скачать
Координаты точек на числовой окружности, часть 5. Алгебра 10 класс.Скачать
Четыре точки на окружности | ЕГЭ-2017. Задание 16. Математика. Профильный уровень| Борис ТрушинСкачать
Решение задач по теме "Поворот точки вокруг начала координат"Скачать
№141. Один конец данного отрезка лежит в плоскости ос, а другой находится от нее на расстоянии 6 см.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать