Числовая ось |
Прямоугольная декартова система координат на плоскости |
Формула для расстояния между двумя точками координатной плоскости |
Уравнение окружности на координатной плоскости |
- Числовая ось
- Прямоугольная декартова система координат на плоскости
- Формула для расстояния между двумя точками координатной плоскости
- Уравнение окружности на координатной плоскости
- Окружность
- Окружность в полярных координатах
- Построение окружности по простому уравнению в полярной системе координат
- Еще одно уравнение окружности в полярных координатах
- Уравнение окружности в полярных координатах
- Построение окружности в полярной системе координат
- Теперь сместим окружность по вверх, очередное уравнение окружности в полярных координатах
- 🌟 Видео
Видео:9 класс. Геометрия. Декартовы координаты. Уравнение окружности. Уравнение прямой. Урок #6Скачать
Числовая ось
Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление
указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.
Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .
Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
Прямоугольная декартова система координат на плоскости
Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).
Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.
Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты – абсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).
Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .
Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).
Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .
Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).
Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.
Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .
Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.
Видео:Уравнение окружности в декартовых координатахСкачать
Формула для расстояния между двумя точками координатной плоскости
Утверждение 1 . Расстояние между двумя точками координатной плоскости
вычисляется по формуле
Доказательство . Рассмотрим рисунок 6.
| A1A2| 2 = = ( x2 – x1) 2 + ( y2 – y1) 2 . | (1) |
что и требовалось доказать.
Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Уравнение окружности на координатной плоскости
Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:
Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .
Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид
Видео:Уравнение окружности (1)Скачать
Окружность
Определение: замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра О), лежащей в той же плоскости, что и кривая.
Определения связанные с окружностью
Хорда: отрезок, соединяющий две точки окружности.
Диаметр: хорда, проходящая через центр окружности. Диаметром окружности также называют длину этой хорды.
Пи ( ): Число 3, 141 592 653 589 793 . , равное отношению длины окружности к диаметру.
Радиус: отрезок, соединяющий центр окружности с какой-либо ее точкой (а так же длина этого отрезка).
Сектор круга: фигура, ограниченная двумя радиусами и дугой, на которую они опираются.
Касательная к окружности: прямая, перпендикулярная радиусу окружности, проведенная в точку касания.
Диаметр = 2 x радиус окружности
Длина окружности = x диаметр = 2 x радиус
Площадь круга :
площадь = r 2
Длина дуги окружности: (с центральным углом )
если выражен в градусах, то длина = x ( /180) x r
если выражен в радианах, то длина = r x
Площадь сектора окружности: (с центральным углом q )
если выражен в градусах, то площадь = ( /360) x r 2
если выражен в радианах, то площадь = ( /2) x r 2
Уравнение окружности: (в декартовых координатах)
для окружности с центром в точке (x0, y 0 ) и радиусом ( r ):
Уравнение окружности: (в полярных координатах)
для окружности с центром в точке (0, 0): r ( ) = радиус
для окружности с центром с полярными координатами: ( c , a ) и радиусом a :
r 2 — 2 cr cos ( — a ) + c 2 = a 2
Видео:ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.Скачать
Окружность в полярных координатах
Уравнение окружности в полярных координатах выглядит очень просто
Это уравнение показывает, что ρ вообще не зависит от угла φ.
Видео:Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Построение окружности по простому уравнению в полярной системе координат
Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать
Еще одно уравнение окружности в полярных координатах
Первый пример был очень простым, теперь возьмем окружность смещенную по оси X в декартовых координатах и получим ее полярное уравнение.
Известно, что окружность в декартовой прямоугольной системе координат описывается уравнением:
Используя эти формулы и подставив их в (1) мы получим:
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Уравнение окружности в полярных координатах
Изначально после подстановки имеем
И этого уравнения получается система
Первое уравнение системы описывает полюс окружности.
Второе описывает саму окружность в полярной системе координат.
В итоге получаем:
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Построение окружности в полярной системе координат
Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Теперь сместим окружность по вверх, очередное уравнение окружности в полярных координатах
В данном варианте мы сместим окружность по оси Y в декартовых координатах и получим ее полярное уравнение.
При таком смещении окружность описывается уравнением:
И этого уравнения получается система
Первое уравнение системы описывает полюс окружности.
Второе описывает саму окружность в полярной системе координат.
🌟 Видео
Уравнение окружностиСкачать
Уравнение окружности ? Окружность в системе координат / Функция окружностиСкачать
Уравнение Окружности, Круга, Сферы и шара в Декартовой системе координат.Скачать
Уравнение окружности. Практика. Урок 7. Геометрия 9 классСкачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать
Математика Без Ху!ни. Полярные координаты. Построение графика функции.Скачать
Координаты на плоскости и в пространстве. Вебинар | МатематикаСкачать