Иррациональный тангенс на окружности

Тангенс
Содержание
  1. Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.
  2. Аргумент и значение тангенса
  3. Тангенс острого угла
  4. Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.
  5. Вычисление тангенса числа или любого угла
  6. Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:
  7. Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.
  8. Чтобы определить тангенс с помощью числовой окружности, нужно: 1) Отметить соответствующую аргументу тангенса точку на числовой окружности. 2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов. 3) Найти координату пересечения этой прямой и оси тангенсов.
  9. В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.
  10. Знаки по четвертям
  11. Связь с другими тригонометрическими функциями:
  12. Тригонометрическая замена. Интегрируем квадратичные иррациональности!
  13. Значения тангенса и котангенса на тригонометрическом круге
  14. 📸 Видео

Тангенс – одна из тригонометрических функций. Как и для всех других функций, значение тангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность.

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Аргумент и значение тангенса

Иррациональный тангенс на окружности

Аргументом тангенса может быть:
— как число или выражение с Пи: (1,3), (frac), (π), (-frac) и т.п.
— так и угол в градусах: (45^°), (360^°),(-800^°), (1^° ) и т.п.

Для обоих случаев тангенс вычисляется одинаковым способом – либо через значения синуса и косинуса, либо через тригонометрический круг (см. ниже).

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Тангенс острого угла

Тангенс можно определить с помощью прямоугольного треугольника — он равен отношению противолежащего катета к прилежащему.

1) Пусть дан угол и нужно определить тагенс этого угла.

Иррациональный тангенс на окружности

2) Достроим на этом угле любой прямоугольный треугольник.

Иррациональный тангенс на окружности

3) Измерив, нужные стороны, можем вычислить тангенс.

Иррациональный тангенс на окружности

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Вычисление тангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших (360°) тангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите (tg:0).
Решение: Чтобы найти тангенс нуля нужно найти сначала синус и косинус (0). И то, и другое найдем с помощью тригонометрического круга :

Иррациональный тангенс на окружности

Точка (0) на числовой окружности совпадает с (1) на оси косинусов, значит (cos:0=1). Если из точки (0) на числовой окружности провести перпендикуляр к оси синусов, то мы попадем в точку (0), значит (sin:⁡0=0). Получается: (tg:0=) (frac) (=) (frac) (=0).

Пример. Вычислите (tg:(-765^circ)).
Решение: (tg: (-765^circ)=) (frac)
Что бы вычислить синус и косинус (-765^°). Отложим (-765^°) на тригонометрическом круге. Для этого надо повернуть в отрицательную сторону на (720^°) , а потом еще на (45^°).

Иррациональный тангенс на окружности

Однако можно определять тангенс и напрямую через тригонометрический круг — для этого надо на нем построить дополнительную ось:

Прямая проходящая через начало отсчета на числовой окружности и параллельная оси ординат (синусов) называется осью тангенсов. Направление оси тангенсов и оси синусов совпадает.

Иррациональный тангенс на окружности

Ось тангенсов – это фактически копия оси синусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси синусов.

Чтобы определить тангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу тангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси тангенсов.
3) Найти координату пересечения этой прямой и оси тангенсов.

Иррациональный тангенс на окружности

2) Проводим через данную точку и начало координат прямую.

Иррациональный тангенс на окружности

3) В данном случае координату долго искать не придется – она равняется (1).

Пример. Вычислите (tg: 45°) и (tg: (-240°)).
Решение:
Для угла (45°) ((∠KOA)) тангенс будет равен (1), потому что именно в таком значении сторона угла, проходящая через начало координат и точку (A), пересекает ось тангесов. А для угла (-240°) ((∠KOB)) тангенс равен (-sqrt) (приблизительно (-1,73)).

Иррациональный тангенс на окружности

Значения для других часто встречающихся в практике углов смотри в тригонометрической таблице.

В отличие от синуса и косинуса значение тангенса не ограничено и лежит в пределах от (-∞) до (+∞), то есть может быть любым.

Иррациональный тангенс на окружности

При этом тангенс не определен для:
1) всех точек (A) (значение в Пи: …(-) (frac) ,(-) (frac) , (frac) , (frac) , (frac) …; и значение в градусах: …(-630°),(-270°),(90°),(450°),(810°)…)
2) всех точек (B) (значение в Пи: …(-) (frac) ,(-) (frac) ,(-) (frac) , (frac) , (frac) …; и значение в градусах: …(-810°),(-450°),(-90°),(270°)…) .

Так происходит потому, что прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось тангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках тангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений тангенс может быть найден).

Из-за этого при решении тригонометрических уравнений и неравенств с тангенсом необходимо учитывать ограничения на ОДЗ .

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Знаки по четвертям

С помощью оси тангенсов легко определить знаки по четвертям тригонометрической окружности. Для этого надо взять любую точку на четверти и определить знак тангенса для нее описанным выше способом. У всей четверти знак будет такой же.

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение тангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение тангенса будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Иррациональный тангенс на окружности

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Связь с другими тригонометрическими функциями:

котангенсом того же угла: формулой (ctg⁡:x=) (frac)
Другие наиболее часто применяемые формулы смотри здесь .

Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Тригонометрическая замена. Интегрируем квадратичные иррациональности!

Итак, друзья, продолжаем знакомиться с типовыми заменами при вычислении неопределённых интегралов. В прошлый раз мы познакомились с наиболее часто употребляемой степенной заменой, усвоили, как и где именно она применяется, порешали несложные примеры с корнями. Суть степенной замены заключалась в том, что старая переменная интегрирования икс заменялась степенной функцией от новой переменной t. И после такой замены у нас пропадали все корни.

В этом уроке речь пойдёт о так называемой тригонометрической замене. Суть её тоже очень простая и заключается в следующем: старая переменная икс заменяется на некоторую… тригонометрическую функцию от t. Да-да! Всего возможно четыре варианта:

Иррациональный тангенс на окружности

Параметр а — некоторая положительная константа. Зачем она там нужна, станет ясно чуть ниже. На примерах.)

А теперь будем разбираться, где именно применяется такая замена и что она нам даёт. Заодно и элементарную тригонометрию повторим. 🙂

Тригонометрическая замена, так же, как и степенная, применяется при интегрировании некоторых функций с корнями. Только, в отличие от степенной замены, для тригонометрической есть два важных условия её применения:

1) Подынтегральная функция содержит квадратный (и только квадратный!) корень;

2) Под корнем стоит квадратичная конструкция вида a 2 ±x 2 .

Иными словами, в сегодняшнем уроке речь пойдёт о вычислении интегралов, содержащих вот такие корни:

Иррациональный тангенс на окружности

Для плюса и для минуса используется своя замена. Вот вам небольшая сводная табличка:

Иррациональный тангенс на окружности

Выбирать можно любую из предложенных подстановок: для минуса хоть синус, хоть косинус, а для плюса — либо тангенс, либо котангенс. Что больше нравится. 🙂

Суть тригонометрической замены полностью аналогична — убрать корень. То есть, добиться того, чтобы под корнем получился точный квадрат и корень извлекался начисто. И, тем самым, исчез из примера.)

Как же это происходит? Для полного понимания нам понадобится три до боли знакомых школьных тождества:

Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

А теперь возьмём какой-нибудь из корней (пусть первый корень, с минусом в подкоренном выражении) и подставим в него нашу замену (допустим, с синусом a·sin t). Что у нас получится:

Иррациональный тангенс на окружности

Для корня с плюсом проделаем всё то же самое, но на примере подстановки с тангенсом:

Иррациональный тангенс на окружности

Вот и вся суть. Был корень — и нету корня! Возможно, кто-то хмыкнет скептически: какая, мол, разница, корень под интегралом или тригонометрия?! Хрен редьки не слаще… А в чём-то тригонометрия даже и похуже корней будет!

Что ж, настало время удивить скептиков. На примерах.) Итак, начнём!

Пример 1

Иррациональный тангенс на окружности

Подынтегральная функция содержит корень вида

Иррациональный тангенс на окружности

Число а у нас — двойка: 4 = 2 2 . Раз под корнем минус, то используем замену либо с синусом, либо с косинусом. Давайте, с косинусом возьмём. Для разнообразия.)

Итак, замена: x = 2cos t

Сразу же можно выразить само t, а также dx:

Иррациональный тангенс на окружности

А теперь, используя нашу замену, упрощаем сам корень, который нам так мешает:

Иррациональный тангенс на окружности

Вот и отлично. Корня больше нет. Теперь посмотрим, что же у нас получится под интегралом после такой замены:

Иррациональный тангенс на окружности

И как вам? Был интеграл от ужасного корня, а после замены стал табличный (!) интеграл. От косинуса, правда, ну и что в этом страшного? 🙂

Осталось лишь вернуться обратно к переменной икс и записать ответ. Только я не буду сейчас тупо в лоб считать что-то типа

Иррациональный тангенс на окружности

а сразу найду синус t из равенства, где мы упрощали наш корень:

Иррациональный тангенс на окружности

Всё. Подставляем это выражение в наш результат вместо sin t и окончательно получаем:

Иррациональный тангенс на окружности

И все дела.) Да-да, вот такой вот простенький ответ у этого примера.) Можете даже в уме его продифференцировать и получить подынтегральную функцию. 🙂

Особо глазастые студенты при первом взгляде на пример, возможно, узрели вот такую взаимосвязь:

Иррациональный тангенс на окружности

Что ж, респект глазастым! 🙂 Да, действительно, если внести подкоренное выражение 4-х 2 под дифференциал, то пример элементарно сведётся к табличной степенной функции:

Иррациональный тангенс на окружности

Можно так интегрировать? А почему — нет? Математика не запрещает. Но нам ведь размяться с тригонометрической заменой нужно! Вот и изучаем на несложном примере. 🙂

А теперь пример посложнее. Поменяем местами в нашей подынтегральной функции числитель и знаменатель. То есть, просто перевернём подынтегральную функцию. Вот такой пример будем решать:

Пример 2

Иррациональный тангенс на окружности

Давайте, в этот раз используем замену с синусом. Сразу пишем:

Иррациональный тангенс на окружности

И теперь, после подстановки, наш новый интеграл стал выглядеть вот так:

Иррациональный тангенс на окружности

Что делать дальше? Главное — не бояться! И смекалки немного. 🙂

Вообще говоря, на такого рода функции есть свой приём интегрирования (тоже замена, кстати), но мы пока сделаем вид, что про неё не знаем. 🙂 И попробуем выкрутиться с помощью элементарных преобразований, которые мы с вами уже знаем. )

Что здесь можно сделать? Ну, напрашивается подведение под дифференциал, ибо в дроби сидят синус и косинус — родственнички по производной.) Для этого надо попробовать преобразовать подынтегральное выражение так, чтобы везде осталась одна функция — либо синус, либо косинус. Здесь можно всё свести к косинусу. Смотрите, как это делается! По пунктам:

1. Умножаем числитель и знаменатель дроби (вместе с dt!) на sin t. Что именно это даст — узнаем дальше.

Иррациональный тангенс на окружности

2. Заменяем в знаменателе sin 2 t на 1-cos 2 t. Согласно основному тригонометрическому тождеству, ага. 🙂

Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

и подводим косинус под знак дифференциала (про минус тоже не забываем, да).

Иррациональный тангенс на окружности

Вот так. Теперь всё подынтегральное выражение у нас сведено к косинусу. Я согласен, что ещё надо было додуматься домножить всё на sin t, чтобы выйти на такую комбинацию. Но тут уже только богатый опыт рулит. Такое чутьё приходит только с практикой. Так что — решайте примеры! Чем больше, тем лучше.)

Итак, теперь смело заменяем косинус новой буквой. Тэ у нас уже использовано, пусть зэт будет:

Иррациональный тангенс на окружности

Выражаем наш интеграл теперь уже через переменную z:

Иррациональный тангенс на окружности

А теперь в дело вступает наш старый добрый излюбленный приёмчик — отнять/прибавить единичку. 🙂 Продолжаем:

Иррациональный тангенс на окружности

Единичка, я надеюсь, ни у кого проблем в интегрировании не вызывает? А что же касается дроби 1/(z 2 -1), то это не что иное, как табличный интеграл! Открывайте нашу таблицу и ищите похожую формулу. Это седьмая формула, с «высоким» логарифмом:

Иррациональный тангенс на окружности

В роли «а» у нас выступает единичка. Возвращаемся к нашим баранам:

Иррациональный тангенс на окружности

Что ж, заготовка для ответа получена. Теперь поэтапно возвращаемся обратно к иксу:

Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

Вот такой вот интересный пример. И довольно красивый ответ.)

Маньяки могут его продифференцировать. Я продифференцировал. Всё гуд.)

Продолжаем развлекаться. 🙂 Теперь вообще уберём знаменатель и решим вот такой примерчик:

Пример 3

Иррациональный тангенс на окружности

Под интегралом теперь стоит просто чистый корень, безо всего. И тут тоже на помощь придёт тригонометрическая замена.) Давайте, снова будем всё выражать через синус, ибо он удобнее: минус лишний не всплывает, который легко потерять. Действуем:

Иррациональный тангенс на окружности

Как теперь быть с косинусом в квадрате? Если в прошлом примере нам пришлось домножать всё на синус, то тут всё гораздо проще. Призываем на помощь школьную тригонометрию! На сей раз — формулы понижения степени. А чуть конкретнее — вот эту:

Иррациональный тангенс на окружности

И после такого преобразования наш интеграл легко превращается в сумму табличных (ну, или почти табличных :)):

Иррациональный тангенс на окружности

Надеюсь, особо не нужно комментировать, как именно при интегрировании получился синус двух t? Кто не понял — читаем урок « Подведение функции под знак дифференциала ». Там всё популярно изложено. 🙂

Всё. «Рыба» для ответа готова. Осталось правильно перейти к иксу да подставить вместо t в выражения 2t и sin 2t.

Прежде всего, выясним из нашей замены, что же такое это самое t:

Иррациональный тангенс на окружности

Теперь раскроем синус двойного угла: sin2t = 2sin t·cos t

Зачем так сделано? А затем, что теперь и синус и косинус легко выражаются через x (смотрим синюю табличку с нашей заменой)! Вот так:

Иррациональный тангенс на окружности

И теперь наш окончательный ответ полностью готов:

Иррациональный тангенс на окружности

Ну как? Да, я согласен, не самые простые примеры. Так и мы с вами уже всё-таки на приличном уровне, правда?

Что-то мы всё с синусами да косинусами возимся, а тангенс/котангенс как-то обделили вниманием. Давайте и такой примерчик рассмотрим! На десерт.) Он совсем несложный: хватит с вас жести на сегодня! 🙂 Просто чтобы суть замены уловить.)

Пример 4

Иррациональный тангенс на окружности

Не пугаемся внешнего вида примера! Внешность иногда бывает обманчива, да.)

Сразу замечаем под корнем сумму 1+х 2 . Раз сумма, то, стало быть, подходящая замена для ликвидации корня — с тангенсом (или котангенсом). Опять же, по причине нежелания возиться с лишним минусом, я выберу тангенс (а = 1, x = tg t):

Иррациональный тангенс на окружности

И снова перед нами безобидный табличный интеграл! Интегрируем косинус и — готово дело:

Иррациональный тангенс на окружности

Всё. Выражаем теперь нашу первообразную через икс. Как? По формулам тригонометрии, вестимо! У нас есть тангенс, а нас интересует синус.

Иррациональный тангенс на окружности

Так. Квадрат косинуса готов. Осталось лишь из основного тригонометрического тождества вытащить квадрат синуса, извлечь корень и — цель достигнута!

Иррациональный тангенс на окружности

Вот и наш ответ. Довольно простенький на сей раз:

Иррациональный тангенс на окружности

Подытожим наш урок. Давайте разберёмся, зачем в самом начале урока я высказал два обязательных требования, чтобы сам корень был только квадратным (а не кубическим или какой-то более высокой степени), а также чтобы под корнем находилась конструкция вида x 2 ±a 2 . Догадались, почему?

Да потому, что в любой другой ситуации (кубический корень или же под корнем многочлен более высокой степени) у нас просто-напросто не исчезнет иррациональность, и данная замена нам уже никак не поможет свести интеграл к красивому виду. 🙂 И, если вам, вдруг, попался такой пример, то, скорее всего, преобразования более хитрые.

Разумеется, подобные интегралы не ограничиваются этими четырьмя примерами. И для интегралов, содержащих квадратичные иррациональности, есть и более суровые подстановки — Эйлера и Абеля. Но такие подстановки — уже высший пилотаж в интегрировании. Их мы будем изучать ближе к концу раздела. Зато тщательный разбор этих четырёх примеров даст вам возможность уверенно брать хотя бы некоторые интегралы подобного типа. Так что тригонометрическая замена — штука весьма полезная. Мы с ней дружить будем. 🙂 А для дружбы, конечно же, необходимо хорошо знать школьную тригонометрию — основные тождества (их шесть), двойные углы, формулы понижения степени и т.д.

Что ж, на сегодня хватит. А в качестве тренировочного упражнения в этот раз я дам небольшое творческое задание. Чтобы скучно не было.)

Есть в нашей замечательной табличке интегралов парочка довольно страшных формул. Вот эти:

Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

И теперь, в качестве задания, я предлагаю вам доказать эти формулы! С помощью тригонометрической замены, да.) Чтобы вы прочувствовали, откуда что в математике берётся. И берётся явно не с потолка.)

С первой формулой проблем возникнуть не должно: там всё очевидно. А вот со второй («длинным логарифмом») я немного подскажу. В формуле число А для определённости предполагается положительным. Раз оно положительное, то можно совершенно спокойно заменить это самое А на a 2 . И дальше работать уже с заменой через тангенс.) Материала этого (и прошлых) уроков вполне достаточно, чтобы одолеть это задание. Будет вам там парочка сюрпризов! Выручат свойства логарифмов и первообразных (это подсказка! :)).

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: Иррациональный тангенс на окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что Иррациональный тангенс на окружностии Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить Иррациональный тангенс на окружности

Находим на круге Иррациональный тангенс на окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что Иррациональный тангенс на окружности

Ответ: Иррациональный тангенс на окружности

Пример 2.

Вычислить Иррациональный тангенс на окружности

Находим на круге Иррациональный тангенс на окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

Иррациональный тангенс на окружностине существует.

Ответ: не существует

Пример 3.

Вычислить Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

Находим на круге точку Иррациональный тангенс на окружности(это та же точка, что и Иррациональный тангенс на окружности) и от нее по часовой стрелке (знак минус!) откладываем Иррациональный тангенс на окружности(Иррациональный тангенс на окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как Иррациональный тангенс на окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение Иррациональный тангенс на окружности.

Так значит, Иррациональный тангенс на окружности

Ответ: Иррациональный тангенс на окружности

Пример 4.

Вычислить Иррациональный тангенс на окружности

Иррациональный тангенс на окружности

Поэтому от точки Иррациональный тангенс на окружности(именно там будет Иррациональный тангенс на окружности) откладываем против часовой стрелки Иррациональный тангенс на окружности.

Выходим на ось котангенсов, получаем, что Иррациональный тангенс на окружности

Ответ: Иррациональный тангенс на окружности

Пример 5.

Вычислить Иррациональный тангенс на окружности

Находим на круге Иррациональный тангенс на окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что Иррациональный тангенс на окружности

Ответ: Иррациональный тангенс на окружности

Иррациональный тангенс на окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

📸 Видео

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

10 класс. Алгебра. Углубленный уровень. Как доказать, что тангенс 5 градусов - иррациональное числоСкачать

10 класс. Алгебра. Углубленный уровень. Как доказать, что тангенс 5 градусов - иррациональное число

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графики

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

ТРИГОНОМЕТРИЯ с нуля за 30 минут

Таблица значений тригонометрических функций - как её запомнить!!!Скачать

Таблица значений тригонометрических функций - как её запомнить!!!
Поделиться или сохранить к себе: