Как найти уравнение окружности, симметричной данной?
Симметричные окружности имеют равные радиусы. Следовательно, остаётся найти координаты центра симметричной окружности (как точки, симметричной данной).
1) Окружность задана уравнением (x-3)²+(y+2)²=16. Составить уравнение окружности, симметричной данной относительно точки (7; 10).
Центр окружности (x-3)²+(y+2)²=16 — точка с координатами (3;-2). Найдём точку, симметричную ей относительно точки (7; 10).
Таким образом, центр окружности, симметричной данной, — точка с координатами (11;22). Подставляем в формулу уравнения окружности a=11, b=22, R²=16:
2) Окружность задана уравнением (x+5)²+(y+1)²=9. Составить уравнение окружности, симметричной данной относительно начала координат.
Центром данной окружности является точка (-5;-1). Точка, симметричная данной относительно начала координат — (5;1). Таким образом, для окружности, симметричной данной относительно точки O(0;0) a=5, b=1, R²=9:
3) Окружность задана уравнением (x-7)²+(y-2)²=12. Составить уравнение окружности, симметричной данной относительно прямой y=x.
Центр окружности (x-7)²+(y-2)²=12 — точка (7;2) — при симметрии относительно прямой y=x переходит в точку (2;7). Следовательно, a=2, b=7, R²=12 и искомое уравнение окружности:
4) Окружность задана уравнением (x+4)²+(y-5)²=19. Составить уравнение окружности, симметричной данной относительно прямой y=2x+4.
Центр окружности (x+4)²+(y-5)²=19 — точка (-4;5). Точку, симметричную точке (-4;5) относительно прямой y=2x+4, нашли в прошлый раз — (3,2; 1,4). Таким образом, a=3,2, b=1,4, R²=19 и уравнение симметричной окружности
5) Окружность задана уравнением (x+8)²+(y+3)²=4. Составить уравнение окружности, симметричной данной относительно прямой y= -1.
Центр окружности (x+8)²+(y+3)²=4 — (-8; -3). Точка, симметричная точке (-8; -3) относительно прямой y= -1, имеет такую же абсциссу, x= -8. Расстояние от точки (-8; -3) до прямой y= -1 равно -1-(-3)=2. Расстояние от прямой y= -1 до центра симметричной окружности также равно 2, отсюда -1+2=1 — это ордината центра. Таким образом, точка (-8; 1) — центр окружности, симметричной данной, а R²=4.
Следовательно, искомое уравнение окружности
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
окружность
Определение: Окружность — это линия второго порядка, которая представляет собой геометрическое место точек плоскости, равноудаленных от одной заданной точки, называемой центром.
Если центр находится в начале координат, то окружность задается каноническим уравнением второй степени вида: х2+у2=R2 , где R — радиус окружности; х,у — текущие координаты точек, лежащих на окружности.
Для вывода данного уравнения возьмем на окружности произвольную точку М(х;у). Отрезок ОМ=R является гипотенузой в прямоугольном треугольнике ОМР, а катеты определяются координатами х и у точки М. Уравнение окружности получается по теореме Пифагора: х2+у2=R2, которое называется каноническим уравнением окружности с несмещенным центром.
Если центр окружности находится в точке С(х0;у0), то уравнение окружности со смещенным центром будет иметь
Построение окружности выполняется с помощью циркуля.
Видео:Нахождение точки, симметричной данной относительно плоскости в пространствеСкачать
эллипс
Определение: Эллипс — это линия второго порядка, которая представляет собой геометрическое место точек плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная и равная большой оси эллипса.
Эллипс с несмещенным центром задается каноническим уравнением второй степени вида:
где а и в — полуоси, х,у — текущие координаты точек, лежащих на эллипсе. Центр симметрии находится в начале координат. Осями симметрии служат координатные оси.
При рассмотрении эллипса возможны два случая:
- 1. Если ав, то а называется большая полуось, лежащая на координатной оси Ох, а в — малая полуось, лежащая на координатной оси Оу;
- 2. Если ав, то а называется малая полуось, лежащая на координатной оси Ох, а в-большая полуось, лежащая на координатной оси Оу.
Фокусы F1 и F2 всегда лежат на большой оси эллипса, причем симметрично относительно центра симметрии на расстоянии:
где величина «с» определяет фокусное расстояние.
Для характеристики формы эллипса вводится эксцентриситет.
Определение: Эксцентриситетом эллипса называется отношение фокусного расстояния к длине его большой полуоси:
=, если ав и =, если ва.
Значение эксцентриситета меняется в пределах 0??1. При этом форма эллипса изменяется от окружности (е=0, при а=в=R) и, вытягиваясь, вырождается в прямую (е=1, при а>>в).
Уравнение эллипса выводится из его основного свойства, представленного в определении. Возьмём на эллипсе произвольную точку М(х;у). Расстояния r1 и r2 от фокусов F1 и F2 до точки М(х;у) называются фокальными радиусами.
В соответствии с определением сумма фокальных радиусов есть величина постоянная, равная большой оси эллипса: r1 + r2 = 2а (при ав) — основное свойство эллипса. Для вывода уравнения эллипса необходимо выразить фокальные радиусы r1 и r2 через координаты точки М(х;у) и фокусов F1(с;0) и F2(-с;0)и подставить в это равенство.
Если центр симметрии смещен и находится в точке С(х0;у0), то уравнение эллипса со смещенным центром имеет вид:
Построение эллипса рассмотрим ниже на примерах.
Пример. Определить вид, параметры и построить линию, заданную уравнением:
Решение: 1. Это эллипс с несмещенным центром вида:
2. Найдем параметры: — большая полуось на оси Ох;
— малая полуось на оси Оу;
Фокусы F1(4.6;0) и F2(-4.6;0) лежат на большой оси, совпадающей с осью Ох, симметрично, на расстоянии с=4.6 относительно начала координат.
- 3. Построение эллипса (см. рисунок выше) выполним по этапам:
- 1) строим систему координат Оху;
- 2) на координатных осях симметрично относительно начала координат откладываем большую и малую полуоси (а=5, в=2) и показываем вершины эллипса А1,А2,В1,В2;
- 3) через вершины эллипса параллельно координатным осям строим осевой прямоугольник;
- 4) вписываем эллипс в осевой прямоугольник;
- 5) на большой оси, совпадающей с осью Ох, симметрично относительно начала координат показываем фокусы F1(4.6;0) и F2(-4.6;0).
Видео:Уравнение окружности (1)Скачать
Уравнение с двумя переменными и его график. Уравнение окружности
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm<y=frac=-frac + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm<y=frac> ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm<R=sqrt=2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm<y=frac> ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm<y=frac=-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm<frac+2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
🎬 Видео
ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Симметрия относительно точки. 6 классСкачать
УРАВНЕНИЕ ОКРУЖНОСТИСкачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать
Симметрия относительно точки, линии. Математика 6 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзаменуСкачать
9 класс, 7 урок, Уравнение прямойСкачать
Составляем уравнение окружностиСкачать
Уравнение окружностиСкачать
9 класс. Симметрия относительно точкиСкачать
УРАВНЕНИЕ ОКРУЖНОСТИ 8 и 9 класс геометрияСкачать
Как найти точку, симметричную точке А(3;4) относительно начала координат. Как решать. Простой способСкачать
Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Симметрия относительно прямойСкачать
Уравнение окружности. Практика. Урок 7. Геометрия 9 классСкачать
начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать