Угол А трапеции АВСD с основаниями АD и ВС, вписанной в окружность, равен 52º. Найдите угол В этой трапеции. Ответ дайте в градусах.
Источник: ОГЭ Ященко 2022 (36 вар)
∠А и ∠В односторонние при параллельных прямых ВС||AD (основания трапеции) и секущей АВ их сумма равна 180°. Найдём ∠В:
∠В = 180° – ∠А = 180° – 52° = 128°
- Вписанный угол окружности равен 52
- Решение №2200 Угол А трапеции АВСD с основаниями АD и ВС, вписанной в окружность, равен 52º.
- Центральные и вписанные углы
- Центральный угол и вписанный угол
- Свойства центральных и вписанных углов
- Примеры решения задач
- Углы, связанные с окружностью
- Вписанные и центральные углы
- Теоремы о вписанных и центральных углах
- Теоремы об углах, образованных хордами, касательными и секущими
- Доказательства теорем об углах, связанных с окружностью
- Один из углов трапеции, вписанной в окружность, равен 42°. Найдите потальные углы трапеции.
- Ваш ответ
- решение вопроса
- Похожие вопросы
- 🎬 Видео
Видео:Геометрия Периметр равнобокой трапеции равен 52 см, основания – 13 см и 21 см. Найдите боковуюСкачать
Вписанный угол окружности равен 52
Видео:17)Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 61°.Найдите угол C этойСкачать
Решение №2200 Угол А трапеции АВСD с основаниями АD и ВС, вписанной в окружность, равен 52º.
Угол А трапеции АВСD с основаниями АD и ВС, вписанной в окружность, равен 52º. Найдите угол В этой трапеции. Ответ дайте в градусах.
Источник: ОГЭ Ященко 2022 (36 вар)
∠А и ∠В односторонние при параллельных прямых ВС||AD (основания трапеции) и секущей АВ их сумма равна 180°. Найдём ∠В:
∠В = 180° – ∠А = 180° – 52° = 128°
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Центральные и вписанные углы
О чем эта статья:
Видео:Геометрия Задача № 26 Найти радиус вписанной в трапецию окружностиСкачать
Центральный угол и вписанный угол
Окружность — замкнутая линия, все точки которой равноудалены от ее центра.
Определение центрального угла:
Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF
Определение вписанного угла:
Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую опирается.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC
Видео:Равнобедренная трапеция вписанная в окружность / 8 класс / ГеометрияСкачать
Свойства центральных и вписанных углов
Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
- Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:
Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
- Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
- Вписанные углы окружности равны друг другу, если опираются на одну дугу:
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
- Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.
Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.
Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Хорда — отрезок, соединяющий две точки на окружности.
- Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.
AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.
- Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
- Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.
ㄥBAC + ㄥBDC = 180°
Видео:Задача 6 №27926 ЕГЭ по математике. Урок 141Скачать
Примеры решения задач
Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.
Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?
Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°
Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°
Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°
Видео:Математика 11, задача по геометрии, 2-я часть ЕГЭ, задача 16Скачать
Углы, связанные с окружностью
Вписанные и центральные углы |
Углы, образованные хордами, касательными и секущими |
Доказательства теорем об углах, связанных с окружностью |
Видео:Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать
Вписанные и центральные углы
Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).
Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).
Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.
Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.
Видео:ЕГЭ 6 номер. Задача про трапецию вписанную в окружностьСкачать
Теоремы о вписанных и центральных углах
Фигура | Рисунок | Теорема |
Вписанный угол |
Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.
Вписанный угол | |||
Окружность, описанная около прямоугольного треугольника |
Фигура | Рисунок | Теорема | Формула |
Угол, образованный пересекающимися хордами |
Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.
Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами
Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами
Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами
Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами
Угол, образованный пересекающимися хордами хордами |
Формула: |
Угол, образованный секущими секущими , которые пересекаются вне круга |
Формула: |
Угол, образованный касательной и хордой хордой , проходящей через точку касания |
Формула: |
Угол, образованный касательной и секущей касательной и секущей |
Формула: |
Угол, образованный двумя касательными касательными к окружности |
Формулы: |