Угол прилежащий к окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Углы, связанные с окружностью

Угол прилежащий к окружностиВписанные и центральные углы
Угол прилежащий к окружностиУглы, образованные хордами, касательными и секущими
Угол прилежащий к окружностиДоказательства теорем об углах, связанных с окружностью

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Угол прилежащий к окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Угол прилежащий к окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголУгол прилежащий к окружности
Вписанный уголУгол прилежащий к окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголУгол прилежащий к окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголУгол прилежащий к окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголУгол прилежащий к окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаУгол прилежащий к окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Угол прилежащий к окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Угол прилежащий к окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Угол прилежащий к окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Угол прилежащий к окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Угол прилежащий к окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Угол прилежащий к окружности

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиУгол прилежащий к окружностиУгол прилежащий к окружности
Угол, образованный секущими, которые пересекаются вне кругаУгол прилежащий к окружностиУгол прилежащий к окружности
Угол, образованный касательной и хордой, проходящей через точку касанияУгол прилежащий к окружностиУгол прилежащий к окружности
Угол, образованный касательной и секущейУгол прилежащий к окружностиУгол прилежащий к окружности
Угол, образованный двумя касательными к окружностиУгол прилежащий к окружностиУгол прилежащий к окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Угол прилежащий к окружности

Угол прилежащий к окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол, образованный пересекающимися хордами хордами
Угол прилежащий к окружности
Формула: Угол прилежащий к окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Угол прилежащий к окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Угол прилежащий к окружности
Формула: Угол прилежащий к окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Угол прилежащий к окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Угол прилежащий к окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Угол прилежащий к окружности

В этом случае справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Угол прилежащий к окружности

В этом случае справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

Угол прилежащий к окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Угол прилежащий к окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Угол прилежащий к окружности

Угол прилежащий к окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Угол прилежащий к окружности

Угол прилежащий к окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Угол прилежащий к окружности

Угол прилежащий к окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Угол прилежащий к окружности

Угол прилежащий к окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Угол прилежащий к окружности

Угол прилежащий к окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:Центральный угол в окружностиСкачать

Центральный угол в окружности

Центральные и вписанные углы

Угол прилежащий к окружности

О чем эта статья:

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Угол прилежащий к окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Угол прилежащий к окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол прилежащий к окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Угол прилежащий к окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Угол прилежащий к окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Угол прилежащий к окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Угол прилежащий к окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Угол прилежащий к окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Угол прилежащий к окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Угол прилежащий к окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Угол прилежащий к окружности

ㄥBAC + ㄥBDC = 180°

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Угол прилежащий к окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Угол прилежащий к окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Угол прилежащий к окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Угол. Вписанный угол.

Вписанный угол – это угол, сформированный двумя хордами, берущими начало в одной точки окружности. О вписанном угле говорят, что он опирается на дугу, заключенную между его сторонами.

Вписанный угол равен половине дуги, на которую он опирается.

Говоря другими словами, вписанный угол включает в себе столько угловых градусов, минут и секунд, сколько дуговых градусов, минут и секунд заключено в половине дуги, на которую он опирается. Для обоснования проанализируем три случая:

Угол прилежащий к окружности

Центр O расположен на стороне вписанного угла ABС. Прочертив радиус AO, мы получим ΔABO, в нем OA = OB (как радиусы) и, соответственно, ∠ABO = ∠BAO. По отношению к этому треугольнику, угол AOС — внешний. И значит, он равен сумме углов ABO и BAO, или равен двойному углу ABO. Значит ∠ABO равен половине центрального угла AOС. Но этот угол измеряется дугой AC. То есть, вписанный угол ABС измеряется половиной дуги AC.

Угол прилежащий к окружности

Центр O расположен между сторонами вписанного угла ABС.Начертив диаметр BD, мы поделим угол ABС на два угла, из которых, по установленному в первом случае, один измеряется половиной дуги AD, а другой половиной дуги СD. И соответственно угол ABС измеряется (AD+DС) /2, т.е. 1 /2 AC.

Угол прилежащий к окружности

Центр O расположен вне вписанного угла ABС. Начертив диаметр BD, мы будем иметь:∠ABС = ∠ABD — ∠CBD. Но углы ABD и CBD измеряются, на основании обоснованного ранее половинами дуг AD и СD. И так как ∠ABС измеряется (AD-СD)/2, то есть половиной дуги AC.

Следствие 1. Любые вписанные углы, опирающиеся на одну и ту же дугу одинаковы, то есть равны между собой. Поскольку каждый из них измеряется половиной одной и той же дуги.

Следствие 2. Вписанный угол, опирающийся на диаметр — прямой угол. Поскольку каждый такой угол измеряется половиной полуокружности и, соответственно, содержит 90°.

📺 Видео

Построение биссектрисы угла. 7 класс.Скачать

Построение биссектрисы угла. 7 класс.

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Углы, связанные с окружностьюСкачать

Углы, связанные с окружностью

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрияСкачать

ОГЭ как найти тангенс угла, если нет треугольника #математика #огэ #огэматематика #геометрия

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Вписанный угол в окружность ❤️ #геометрияСкачать

Вписанный угол в окружность ❤️ #геометрия

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле
Поделиться или сохранить к себе: