Доклад по теме окружность 9 класс

Реферат по математике «Окружность и касательные» (стр. 1 )
Доклад по теме окружность 9 классИз за большого объема этот материал размещен на нескольких страницах:
1 2 3

Доклад по теме окружность 9 класс

Министерство образования и науки

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа № 22»

«Окружность и касательные»

Глава I . Окружность
1.1 Что такое окружность. 4
1.2 Основные термины…………………………………………………………5-6
1.3 Вписанная окружность……………………………………………………..7-8
1.4 Описанная окружность……………………………………………………9-10
1.5 «Замечательные» точки треугольника……………………………………..11

Глава II . «Прямая Эйлера». Окружность девяти точек
2.1 Что такое прямая Эйлера. 12-14
2.2 Окружность девяти точек………………………………………………..15-16
2.3История теорем окружности девяти точек……………………………. 17-18

Глава III .Построение окружности с помощью циркуля и линейки
3.1 Основные понятия………………………………………………………..19-21
3.2 Деление отрезков ………………………………………………………. 22-23
3.3 Известные задачи………………………………………………………. 24-26
3.4 Неразрешимые задачи. ……………………………………………………..27
3.5 Интересные факты…………………………………………………………. 28

Когда-то геометрия включала всю математику. Но математика росла и развивалась особенно бурно в последние 200 лет. Возникли новые направления: математический анализ, теория множеств, топология, совсем иначе стала выглядеть алгебра. Конечно, развивалась и геометрия, однако некоторые математики начали в последнее время относить ее к числу второстепенных математических направлений. Это мнение нашло свое отражение и в содержании школьных программ по математике. Как мало мы знаем о природе геометрии и об успехах, которые были достигнуты ее исследователями! Геометрия и сейчас обладает всеми теми достоинствами, за которые ее ценили педагоги прошлых поколений.

Самая простая из кривых линий – окружность. Это одна из древнейших геометрических фигур. Философы древности придавали ей огромное значение. Согласно Аристотелю, небесная материя, из которой состоят планеты и звезды, как самая совершенная, должна двигаться по самой совершенной фигуре – окружности. Сотни лет астрономы считали, что планеты двигаются по окружностям. Это ошибочное мнение было опровергнуто лишь в XVII в. учением Коперника, Галилея, Кеплера и Ньютона.

Определение касательной к прямой, имеющей с окружностью одну общую точку, встречается впервые в учебнике «Элементы геометрии» французского математика Лежандра (1В «Началах» Евклида дается следующее определение; прямая касается круга, если она встречает круг, но при продолжении не пересекает его.

Цель данного реферата состоит в том, чтобы вспомнить некоторые из полузабытых вещей, касающихся окружностей и касательных к ним, вывести новые теоремы. Узнать способы деления отрезков с помощью циркуля и линейки.

Задача реферата: 1. Изучить понятия окружности и касательных. Особенности и свойства; 2. Окружность девяти точек; 3. Рассмотрение задач на деление отрезков с помощью циркуля и линейки.

1.1 Что такое окружность?

Окружность (рис.1) — геометрическое место всех точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное неотрицательное расстояние , называемое её радиусом.

Доклад по теме окружность 9 класс

· Окружность диаметра AB — это фигура, состоящая из точек A, B и всех точек плоскости, из которых отрезок AB виден под прямым углом.

· Окружность — это фигура, состоящая из всех точек плоскости, для каждой из которых отношение расстояний до двух данных точек равно данному числу, отличному от единицы.

· Также фигура, состоящая из всех таких точек, для каждой из которых сумма квадратов расстояний до двух данных точек равна заданной величине, большей половины квадрата расстояния между данными точками.

Радиус (рис.2) — не только величина расстояния, но и отрезок , соединяющий центр окружности с одной из её точек.

Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс

( рис.2 ) ОА = r — радиус

Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 классОтрезок, соединяющий две точки окружности, называется её хордой. Хорда, проходящая через центр окружности, называется диаметром (рис.3).

(рис.3) АВ — диаметр

· Прямая, имеющая с окружностью ровно одну общую точку, называется касательной (рис.4) к окружности, а их общая точка называется точкой касания прямой и окружности.

Доклад по теме окружность 9 класс

(рис.4) а — касательная

Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс

Доклад по теме окружность 9 класс Доклад по теме окружность 9 классПрямая, проходящая через две различных точки окружности, называется секущей (рис.5).

(рис.5) АВ – секущая

· Центральный угол (рис. 6)— угол с вершиной в центре окружности. Центральный угол равен градусной мере дуги, на которую опирается.

Доклад по теме окружность 9 класс

Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Вписанный угол (рис. 7) — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность. Вписанный угол равен половине градусной меры дуги, на которую опирается.

1.3 Вписанная окружность.

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.

Доклад по теме окружность 9 класс
(рис.8)

· В каждый треугольник можно вписать окружность, притом только одну.

· Центр O вписанной окружности называется инцентром, он равноудалён от всех сторон и является точкой пересечения биссектрис треугольника.

Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс Доклад по теме окружность 9 класс(рис.9)

Доклад по теме окружность 9 класс
Доклад по теме окружность 9 класс
Доклад по теме окружность 9 класс

· Не во всякий четырехугольник можно вписать окружность (рис.10)

· В любом описанном четырехугольнике суммы противоположных сторон равны (АВ + С D = a + b + c + d , BC + AD = a + b + c + d , поэтому AB + CD = BC + AD ) (рис.11)

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Доклад по теме окружность 9 класс

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Доклад по теме окружность 9 класс

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать

Уравнение окружности | Геометрия 7-9 класс #90| Инфоурок

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Составляем уравнение окружностиСкачать

Составляем уравнение окружности

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:ГЕОМЕТРИЯ 9 класс: Длина окружности, площадь круга и площадь кругового сектораСкачать

ГЕОМЕТРИЯ 9 класс: Длина окружности, площадь круга и площадь кругового сектора

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:УРАВНЕНИЯ ОКРУЖНОСТИ И ПРЯМОЙ 9 класс геометрияСкачать

УРАВНЕНИЯ ОКРУЖНОСТИ И ПРЯМОЙ 9 класс геометрия

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать

ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия Атанасян

Всё про окружность и круг

Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.

Доклад по теме окружность 9 класс

Доклад по теме окружность 9 класс

Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

Доклад по теме окружность 9 класс

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

Доклад по теме окружность 9 класс

Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.

Доклад по теме окружность 9 класс

Квадрат касательной равен произведению секущей на ее внешнюю часть

Доклад по теме окружность 9 класс

Центральный угол — это угол, вершина которого совпадает с центром окружности.

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

Доклад по теме окружность 9 класс

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

Доклад по теме окружность 9 класс

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

Доклад по теме окружность 9 класс

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

Доклад по теме окружность 9 класс

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = ПR 2 а/360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

📽️ Видео

Окружность. Круг. 5 класс.Скачать

Окружность. Круг. 5 класс.

Синус, косинус произвольного угла. 9 класс.Скачать

Синус, косинус произвольного угла. 9 класс.

Площадь круга. 9 класс.Скачать

Площадь круга. 9 класс.

Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Интенсив к РЭ Максвелла для 7-8 классов | Движение по окружностиСкачать

Интенсив к РЭ Максвелла для 7-8 классов | Движение по окружности

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Длина окружности. Практическая часть. 9 класс.Скачать

Длина окружности. Практическая часть. 9 класс.

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Окружность | Геометрия 7-9 класс #22 | ИнфоурокСкачать

Окружность | Геометрия 7-9 класс #22 | Инфоурок
Поделиться или сохранить к себе: