Угол напротив дуги окружности

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Углы, связанные с окружностью

Угол напротив дуги окружностиВписанные и центральные углы
Угол напротив дуги окружностиУглы, образованные хордами, касательными и секущими
Угол напротив дуги окружностиДоказательства теорем об углах, связанных с окружностью

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Угол напротив дуги окружности

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Угол напротив дуги окружности

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

ФигураРисунокТеорема
Вписанный уголУгол напротив дуги окружности
Вписанный уголУгол напротив дуги окружностиВписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный уголУгол напротив дуги окружностиВписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный уголУгол напротив дуги окружностиДва вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный уголУгол напротив дуги окружностиВписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольникаУгол напротив дуги окружности

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Угол напротив дуги окружности

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Угол напротив дуги окружности

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Угол напротив дуги окружности

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Угол напротив дуги окружности

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Угол напротив дуги окружности

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Угол напротив дуги окружности

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

ФигураРисунокТеоремаФормула
Угол, образованный пересекающимися хордамиУгол напротив дуги окружностиУгол напротив дуги окружности
Угол, образованный секущими, которые пересекаются вне кругаУгол напротив дуги окружностиУгол напротив дуги окружности
Угол, образованный касательной и хордой, проходящей через точку касанияУгол напротив дуги окружностиУгол напротив дуги окружности
Угол, образованный касательной и секущейУгол напротив дуги окружностиУгол напротив дуги окружности
Угол, образованный двумя касательными к окружностиУгол напротив дуги окружностиУгол напротив дуги окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Угол напротив дуги окружности

Угол напротив дуги окружности

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол, образованный пересекающимися хордами хордами
Угол напротив дуги окружности
Формула: Угол напротив дуги окружности
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула: Угол напротив дуги окружности

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Угол напротив дуги окружности
Формула: Угол напротив дуги окружности
Угол, образованный касательной и секущей касательной и секущей
Формула: Угол напротив дуги окружности

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы: Угол напротив дуги окружности

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Видео:Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

Угол напротив дуги окружности

В этом случае справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

Угол напротив дуги окружности

В этом случае справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

Угол напротив дуги окружности

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Угол напротив дуги окружности

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Угол напротив дуги окружности

Угол напротив дуги окружности

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Угол напротив дуги окружности

Угол напротив дуги окружности

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Угол напротив дуги окружности

Угол напротив дуги окружности

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

Угол напротив дуги окружности

Угол напротив дуги окружности

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Угол напротив дуги окружности

Угол напротив дуги окружности

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Центральные и вписанные углы

Угол напротив дуги окружности

О чем эта статья:

Видео:Вписанные углы в окружностиСкачать

Вписанные углы в окружности

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Угол напротив дуги окружности

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Угол напротив дуги окружности

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Центральный угол в окружностиСкачать

Центральный угол в окружности

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол напротив дуги окружности

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Угол напротив дуги окружности

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Угол напротив дуги окружности

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Угол напротив дуги окружности

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Угол напротив дуги окружности

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Угол напротив дуги окружности

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Угол напротив дуги окружности

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Угол напротив дуги окружности

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Угол напротив дуги окружности

ㄥBAC + ㄥBDC = 180°

Видео:Углы, вписанные в окружность. 9 класс.Скачать

Углы, вписанные в окружность. 9 класс.

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Угол напротив дуги окружности

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Угол напротив дуги окружности

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Угол напротив дуги окружности

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

Видео:Вписанные и центральные углыСкачать

Вписанные и центральные углы

Вписанные и центральные углы, их свойства

теория по математике 📈 планиметрия

Видео:Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |Скачать

Всё про вписанные и центральные углы за 4 минуты | Борис Трушин |

Вписанный угол

Вписанный угол – это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.Угол напротив дуги окружности

Свойства вписанных углов

Вписанный угол равен половине дуги, на которую он опирается.

На рисунке показан вписанный угол АСВ и дуга АВ, на которую он опирается. Если, например, дуга АВ=60 0 , то угол АСВ будет равен 30 0 . И наоборот, например, если угол АСВ равен 50 0 , то дуга АВ будет равна 100 0 .

Угол напротив дуги окружности

Свойство вписанного угла №2

Вписанные углы, которые опираются на одну и ту же дугу, равны.

На рисунке показаны три вписанных угла – ACD, AFD, AND, которые опираются на одну и ту же дугу AD, поэтому эти углы равны.

Угол напротив дуги окружностиСвойство вписанного угла №2

Вписанный угол, который опирается на диаметр, прямой.

На рисунке угол ВСА опирается на диаметр АВ, следовательно, он равен 90 0 .

Угол напротив дуги окружности

Видео:Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.

Центральный угол

Центральный угол – это угол, вершина которого лежит в центре окружности.

Угол напротив дуги окружности

Свойства центральных углов

Центральный угол равен дуге, на которую он опирается.

На рисунке показан центральный угол АОВ, который опирается на дугу АВ. Например, дуга АВ равна 80 0 , тогда угол АОВ равен также 80 0 . И наоборот, например, если центральный угол АОВ будет равен 70 0 , то и дуга АВ также будет равна 70 0 .

Угол напротив дуги окружностиСвойства вписанного и центрального угла

Если центральный и вписанный угол опираются на одну и ту же дугу, то вписанный угол равен половине центрального угла. И наоборот, центральный угол в 2 раза больше вписанного, если они опираются на одну и ту же дугу.

На рисунке показаны вписанный угол АВС и центральный угол АОС, которые опираются на одну и ту же дугу АС. Например, если величина угла АОС равна 120 0 , то величина угла АВС будет равна 60 0 .

🎦 Видео

72. Градусная мера дуги окружностиСкачать

72. Градусная мера дуги окружности

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Задача 6 №27885 ЕГЭ по математике. Урок 122Скачать

Задача 6 №27885 ЕГЭ по математике. Урок 122

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Равенство вписанных в окружность углов, опирающихся на одну и ту же дугу.Скачать

Равенство вписанных в окружность углов, опирающихся на одну и ту же дугу.

Как работают вписанные углы? 📐 #shorts #умскул_профильнаяматематика #никитасалливан #егэпрофильСкачать

Как работают вписанные углы? 📐 #shorts #умскул_профильнаяматематика #никитасалливан #егэпрофиль

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)
Поделиться или сохранить к себе: