Угол между медианами треугольника

Треугольник. Формулы и свойства треугольников.
Содержание
  1. Типы треугольников
  2. По величине углов
  3. По числу равных сторон
  4. Вершины углы и стороны треугольника
  5. Свойства углов и сторон треугольника
  6. Теорема синусов
  7. Теорема косинусов
  8. Теорема о проекциях
  9. Формулы для вычисления длин сторон треугольника
  10. Медианы треугольника
  11. Свойства медиан треугольника:
  12. Формулы медиан треугольника
  13. Биссектрисы треугольника
  14. Свойства биссектрис треугольника:
  15. Формулы биссектрис треугольника
  16. Высоты треугольника
  17. Свойства высот треугольника
  18. Формулы высот треугольника
  19. Окружность вписанная в треугольник
  20. Свойства окружности вписанной в треугольник
  21. Формулы радиуса окружности вписанной в треугольник
  22. Окружность описанная вокруг треугольника
  23. Свойства окружности описанной вокруг треугольника
  24. Формулы радиуса окружности описанной вокруг треугольника
  25. Связь между вписанной и описанной окружностями треугольника
  26. Средняя линия треугольника
  27. Свойства средней линии треугольника
  28. Периметр треугольника
  29. Формулы площади треугольника
  30. Формула Герона
  31. Равенство треугольников
  32. Признаки равенства треугольников
  33. Первый признак равенства треугольников — по двум сторонам и углу между ними
  34. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  35. Третий признак равенства треугольников — по трем сторонам
  36. Подобие треугольников
  37. Признаки подобия треугольников
  38. Первый признак подобия треугольников
  39. Второй признак подобия треугольников
  40. Третий признак подобия треугольников
  41. Треугольники общего вида
  42. Треугольники общего вида.
  43. Свойства медиан:
  44. Свойства высот:
  45. Прямоугольный треугольник и его свойства:
  46. Некоторые свойства прямоугольного треугольника:
  47. Соотношение между сторонами и углами в прямоугольном треугольнике:
  48. Значения тригонометрических функций некоторых углов:
  49. Тригонометрические тождества:
  50. Подобие треугольников
  51. Признаки подобия треугольников:
  52. Теорема синусов
  53. Теорема косинусов
  54. Определение и свойства медианы треугольника
  55. Определение медианы треугольника
  56. Свойства медианы
  57. Свойство 1 (основное)
  58. Свойство 2
  59. Свойство 3
  60. Свойство 4
  61. Свойство 5
  62. Примеры задач
  63. 📽️ Видео

Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Типы треугольников

По величине углов

Угол между медианами треугольника

Угол между медианами треугольника

Угол между медианами треугольника

По числу равных сторон

Угол между медианами треугольника

Угол между медианами треугольника

Угол между медианами треугольника

Видео:🔥 Свойства МЕДИАНЫ #shortsСкачать

🔥 Свойства МЕДИАНЫ #shorts

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Угол между медианами треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Медианы треугольника

Угол между медианами треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Биссектрисы треугольника

Угол между медианами треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

Высоты треугольника

Угол между медианами треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Построение медианы в треугольникеСкачать

Построение медианы в треугольнике

Окружность вписанная в треугольник

Угол между медианами треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

Окружность описанная вокруг треугольника

Угол между медианами треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Связь между вписанной и описанной окружностями треугольника

Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Средняя линия треугольника

Свойства средней линии треугольника

Угол между медианами треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Две медианы треугольника пересекаются по прямым углом.Скачать

Две медианы треугольника пересекаются по прямым углом.

Периметр треугольника

Угол между медианами треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольникеСкачать

ЕГЭ Математика. Угол между медианой и биссектрисой в прямоугольном треугольнике

Формулы площади треугольника

Угол между медианами треугольника

Формула Герона

S =a · b · с
4R

Видео:8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Угол между медианой и высотойСкачать

Угол между медианой и высотой

Подобие треугольников

Угол между медианами треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Треугольники общего вида

Видео:Теорема о трёх медианахСкачать

Теорема о трёх медианах

Треугольники общего вида.

Основные свойства треугольников:

  1. Сумма всех углов в треугольнике равна $180°$.
  2. В равнобедренном треугольнике углы при основании равны.
  3. В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
  4. В равностороннем треугольнике все углы по $60°$.
  5. Внешний угол треугольника равен сумме двух углов, не смежных с ним.
  6. Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ — средняя линия, так как соединяет середины соседних сторон.

Биссектриса — это линия, которая делит угол пополам.

  1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
  2. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
  3. Биссектрисы смежных углов перпендикулярны.
  4. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

Медиана — это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.

3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

Высота в треугольнике — это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

Свойства высот:

1. Три высоты (или их продолжения) пересекаются в одной точке.

2. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

3. Высоты треугольника обратно пропорциональны его сторонам:

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

1. Сумма острых углов в прямоугольном треугольнике равна 90 градусов.

2. Катет прямоугольного треугольника, лежащий напротив угла в 30 градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

3. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности (R)

4. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника.

5. В прямоугольном треугольнике радиус вписанной окружности равен: $r=/$ , где $а$ и $b$ – это катеты, $с$ – гипотенуза.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$/$$/$$/$
$cosα$$/$$/$$/$
$tgα$$/$$1$$√3$
$ctgα$$√3$$1$$/$

Тригонометрические тождества:

1. Основное тригонометрическое тождество:

2. Связь между тангенсом и косинусом одного и того же угла:

3. Связь между котангенсом и синусом одного и того же угла:

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

В треугольнике $АВС ВС=16, sin∠A=/$. Найдите радиус окружности, описанной вокруг треугольника $АВС$.

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

Далее подставим числовые данные и найдем $R$

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Видео:Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать

Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

Угол между медианами треугольника

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Видео:Все факты о медиане треугольника для ЕГЭСкачать

Все факты о медиане треугольника для ЕГЭ

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

Угол между медианами треугольника

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Угол между медианами треугольника

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Угол между медианами треугольника

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

Угол между медианами треугольника

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Угол между медианами треугольника

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Угол между медианами треугольника

Видео:Геометрия 8 Класс Урок 4 Удвоение медианыСкачать

Геометрия 8 Класс Урок 4 Удвоение медианы

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

📽️ Видео

Острые углы прямоугольного треугольника равны 63 и 27. Найдите угол между биссектрисой и медианой...Скачать

Острые углы прямоугольного треугольника равны 63 и 27. Найдите угол между биссектрисой и медианой...
Поделиться или сохранить к себе: