У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Параллельность прямых и плоскостей

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Параллельные прямые

Параллельные прямые – прямые, которые лежат в одной плоскости и не пересекаются.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Признак параллельности прямых

Две прямые, параллельные третьей, параллельны между собой.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельные прямая и плоскость

Прямая и плоскость называются параллельными , если они не имеют общих точек.

Признак параллельности прямой и плоскости

Если прямая, не принадлежащая данной плоскости, параллельна какой-нибудь прямой этой плоскости, то она параллельна этой плоскости.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Свойство прямой, параллельной данной плоскости

Если плоскость β проходит через прямую a , параллельную плоскости α , и пересекает эту плоскость по прямой b , то b || a .

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельные плоскости

Параллельные плоскости – плоскости, которые не пересекаются.

Признаки параллельности плоскостей

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то такие плоскости параллельны.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Если каждая из двух данных плоскостей параллельна третьей плоскости, то данные две плоскости параллельны между собой.У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Свойства параллельных плоскостей

Если две параллельные плоскости пересекаются третьей плоскостью, то линии пересечения плоскостей параллельны.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Отрезки параллельных прямых, заключенные между двумя параллельными плоскостями, равны.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

Параллельность и перпендикулярность прямых и плоскостей в пространстве

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости называются скрещивающимися. Прямая и плоскость в пространстве называются параллельными, если они не пересекаются.

Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, лежащей в этой плоскости.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Две плоскости называются параллельными, если они не пересекаются.

Если две параллельные плоскости пересекаются третьей плоскостью, то прямые пересечения плоскостей параллельны. Через точку, не лежащую в данной плоскости, можно провести параллельную плоскость, и притом только одну.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости, так как У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Отрезки параллельных прямых между параллельными плоскостями равны.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости= У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости= У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом. Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой в плоскости, проходящей через точку их пересечения.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Прямая, пересекающая плоскость, перпендикулярна плоскости, если она перпендикулярна двум прямым в плоскости, проходящим через точку их пересечения.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости.

Через каждую точку плоскости можно провести перпендикулярную ей прямую, и только одну. Все прямые, перпендикулярные данной плоскости, параллельны.

Перпендикуляр, опущенный из данной точки на данную плоскость, — это отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, которая перпендикулярна плоскости. Основание перпендикуляра — это его конец, лежащий в плоскости.

Расстояние от точки до плоскости — это длина перпендикуляра, опущенного от этой точки на плоскость.

Наклонная, проведенная из данной точки к данной плоскости, — это любой отрезок, соединяющий данную точку с точкой плоскости, который не является перпендикуляром к плоскости. Конец отрезка, который лежит в плоскости, — это основание наклонной. Проекция наклонной — это отрезок, который соединяет основания перпендикуляра (точку С) и наклонной (точку А).

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Если прямая, проведённая на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и наклонной. И обратно, если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Две пересекающиеся плоскости называются перпендикулярными, если плоскость, перпендикулярная прямой их пересечения, пересекает данные плоскости по перпендикулярным прямым.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Так как У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости, то У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиУ каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости.

Поделись с друзьями в социальных сетях:

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиПерейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек). Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости. В первом случае они параллельны, а во втором — такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиПроиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиЛемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскостиДоказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость. Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным. Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости.

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся.

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

MC У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости. BC=AD= 8 см; У каждой прямой которая находится в одной плоскости можно найти параллельную прямую другой плоскости

🎦 Видео

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскостиСкачать

Найти уравнение плоскости проходящей через прямую и перпендикулярно плоскости

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

№64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают однСкачать

№64. Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают одн

Пересекающиеся и параллельные прямые, лучи, отрезки. Задачи. Геометрия. Математика 2 класс.Скачать

Пересекающиеся и параллельные прямые, лучи, отрезки. Задачи. Геометрия. Математика 2 класс.

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

№57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямаяСкачать

№57. Прямая а параллельна одной из двух параллельных плоскостей. Докажите, что прямая

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | УмскулСкачать

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | Умскул

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 смСкачать

№143. Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрияСкачать

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрия

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

6. Параллельность прямой и плоскостиСкачать

6. Параллельность прямой и плоскости
Поделиться или сохранить к себе:
    1. прямая лежит в плоскости
    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки