Центр рассеивания случайного вектора

Числовые характеристики СЛУЧАЙНОГО ВЕКТОРА

Для двумерного случайного вектора (X, Y) вводятся следующие числовые характеристики.

Начальным моментом порядка r + s случайного вектора (X, Y) называется действительное число nr,s, определяемое формулой:

nr,s = M[X r Y s ] = Центр рассеивания случайного вектора

Начальный момент nr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится.

Центральным моментом порядка r + s случайного вектора (X, Y) называется действительное число mr,s определяемое формулой

mr,s = M[(X-mX) r (Y-mY) s ] = Центр рассеивания случайного вектора

Центральный момент mr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. Вектор с неслучайными координатами (DX, DY) = (m2,0, m0,2) называется дисперсией случайного вектора.

Центральный момент m1,1 называется корреляционным моментом (ковариацией): KXY = M[Центр рассеивания случайного вектораЦентр рассеивания случайного вектора] = M[(X-mX)?(Y-mY)] = M[XY]-mX mY.

Коэффициентом корреляции двух случайных компонентов X и Y случайного вектора является нормированная ковариация

3. |KXY| £ Центр рассеивания случайного вектора, (|rXY | £ 1).

Ковариационный момент и коэффициент корреляции определяет степень линейной зависимости между X и Y. Условие |rXY | = 1 необходимо и достаточно, чтобы СВ X и Y были связаны линейной зависимостью Х = a?Y + b, где a и b — константы. СВ, для которых KXY = 0 (rXY = 0), называются некоррелированными. Из независимости случайных величин Х и Y вытекает их некоррелированность (обратное, вообще говоря, неверно).

Условным математическим ожиданием компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:

mX/Y = M[X/Y = yj] = Центр рассеивания случайного вектора

где Р<X = xi /Y = yj> = Центр рассеивания случайного вектора, pij = Р<X = xi ,Y = yj>.

Условной дисперсией компоненты Х при условии, что Y приняла одно из своих возможных значений yj, называется действительное число определяемое формулой:

DX/Y = D[X/Y = yj] = Центр рассеивания случайного вектора

Приведенные выше формулы для числовых характеристик двумерного случайного вектора без труда обобщаются на случай n-мерного случайного вектора (Х1, Х2, . Хn). Так, например, вектор с неслучайными координатами (m1, m2, . mn), где mi — математическое ожидание СВ Хi, определяемое формулой

mi = M[Xi] =Центр рассеивания случайного вектора, называется центром, рассеивания случайного вектора.

Ковариационной матрицей n-мерного случайного вектора Центр рассеивания случайного вектора = (Х1, Х2, . Хn) называется симметрическая матрица, элементы которой представляют собой ковариации соответствующих пар компонент случайного вектора:

где Кij = M[Центр рассеивания случайного вектораЦентр рассеивания случайного вектора] — ковариация i-й и j-й компонент.

Очевидно, что Кii = М[Xi 2 ] -дисперсия i-й компоненты.

K = Центр рассеивания случайного вектора,

Корреляционной матрицей n-мерного случайного вектора называется симметрическая матрица, составленная из коэффициентов корреляции соответствующих пар компонент случайного вектора:

rij = Центр рассеивания случайного вектора— коэффициент корреляции i-й и j-й компоненты.

C = Центр рассеивания случайного вектора,

Задача 1. Закон распределения случайного вектора (X, Y) задан в следующем виде:

Центр рассеивания случайного вектораY

X

123
11/91/91/9
201/61/6
3001/3

1. Вычислить условное математическое ожидание M[X/Y = 2] и дисперсию D[X/Y = 2].

2. Найти центр рассеивания случайного вектора (X, Y).

3. Построить ковариационную и корреляционную матрицы.

Задача 2. Координаты X, Y случайного положения точки на плоскости имеют

совместное равномерное распределение внутри области G = .

Записать общее выражение для ПР и для ФР вероятности случайного вектора (X,Y).

Найти центр рассеивания (mX, mY)и вычислить дисперсию (DX, DY) совместного распределения координат.

Построить ковариационную и корреляционную матрицы.

Видео:Теория вероятностей #12: случайная величина, плотность и функция распределенияСкачать

Теория вероятностей #12: случайная величина, плотность и функция распределения

Системы случайных величин

Назначение сервиса . С помощью сервиса по заданному закону распределения можно найти:

  • ряды распределения X и Y, математическое ожидание M[X], M[Y], дисперсию D[X], D[Y];
  • ковариацию cov(x,y), коэффициент корреляции rx,y, условный ряд распределения X, условное математическое ожидание M[X/Y=yi];

Кроме этого, дается ответ на вопрос, «зависимы ли случайные величины X и Y ?».

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Пример №1 . Двумерная дискретная случайная величина имеет таблицу распределения:

Y/X1234
1000,110,120,03
2000,130,090,02
300,020,110,080,01
400,030,110,05q

Найти величину q и коэффициент корреляции этой случайной величины.

Решение. Величину q найдем из условия Σpij = 1
Σpij = 0,02 + 0,03 + 0,11 + … + 0,03 + 0,02 + 0,01 + q = 1
0.91+q = 1. Откуда q = 0.09
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X10203040
P0.260.240.220.28∑Pi = 1

Математическое ожидание M[X] = 10*0.26 + 20*0.24 + 30*0.22 + 40*0.28 = 25.2
Дисперсия D[X] = 10 2 *0.26 + 20 2 *0.24 + 30 2 *0.22 + 40 2 *0.28 — 25.2 2 = 132.96
Среднее квадратическое отклонение σ(x) = sqrt(D[X]) = sqrt(132.96) = 11.531

Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y1234
P0.050.460.340.15∑Pi = 1

Математическое ожидание M[Y].
M[y] = 1*0.05 + 2*0.46 + 3*0.34 + 4*0.15 = 2.59
Дисперсия D[Y] = 1 2 *0.05 + 2 2 *0.46 + 3 2 *0.34 + 4 2 *0.15 — 2.59 2 = 0.64
Среднее квадратическое отклонение σ(y) = sqrt(D[Y]) = sqrt(0.64) = 0.801

Ковариация cov(X,Y) = M[X·Y] — M[X]·M[Y] = 2·10·0.11 + 3·10·0.12 + 4·10·0.03 + 2·20·0.13 + 3·20·0.09 + 4·20·0.02 + 1·30·0.02 + 2·30·0.11 + 3·30·0.08 + 4·30·0.01 + 1·40·0.03 + 2·40·0.11 + 3·40·0.05 + 4·40·0.09 — 25.2 · 2.59 = -0.068
Коэффициент корреляции rxy = cov(x,y)/σ(x)&sigma(y) = -0.068/(11.531*0.801) = -0.00736

Пример 2 . Данные статистической обработки сведений относительно двух показателей X и Y отражены в корреляционной таблице. Требуется:

  1. написать ряды распределения для X и Y и вычислить для них выборочные средние и выборочные средние квадратические отклонения;
  2. написать условные ряды распределения Y/x и вычислить условные средние Y/x;
  3. изобразить графически зависимость условных средних Y/x от значений X;
  4. рассчитать выборочный коэффициент корреляции Y на X;
  5. написать выборочное уравнение прямой регрессии;
  6. изобразить геометрически данные корреляционной таблицы и построить прямую регрессии.

Решение. Упорядоченная пара (X,Y) случайных величин X и Y называется двумерной случайной величиной, или случайным вектором двумерного пространства. Двумерная случайная величина (X,Y) называется также системой случайных величина X и Y.
Множество всех возможных значений дискретной случайной величины с их вероятностями называется законом распределения этой случайной величины.
Дискретная двумерная случайная величина (X,Y) считается заданной, если известен ее закон распределения:
P(X=xi, Y=yj) = pij, i=1,2. n, j=1,2. m

X / Y2030405060
1120000
1646000
2103620
26004584
3100467
3600003

События (X=xi, Y=yj) образуют полную группу событий, поэтому сумма всех вероятностей pij(i=1,2. n, j=1,2. m), указанных в таблице, равна 1.
1. Зависимость случайных величин X и Y.
Находим ряды распределения X и Y.
Пользуясь формулой ∑P(xi,yj) = pi (j=1..n), находим ряд распределения X.

X111621263136
P2101157173∑Pi = 100

Математическое ожидание M[X].
M[x] = (11*2 + 16*10 + 21*11 + 26*57 + 31*17 + 36*3 )/100 = 25.3
Дисперсия D[X].
D[X] = (11 2 *2 + 16 2 *10 + 21 2 *11 + 26 2 *57 + 31 2 *17 + 36 2 *3 )/100 — 25.3 2 = 24.01
Среднее квадратическое отклонение σ(x).
Центр рассеивания случайного вектора
Пользуясь формулой ∑P(xi,yj) = qj (i=1..m), находим ряд распределения Y.

Y2030405060
P69551614∑Pi = 100

Математическое ожидание M[Y].
M[y] = (20*6 + 30*9 + 40*55 + 50*16 + 60*14 )/100 = 42.3
Дисперсия D[Y].
D[Y] = (20 2 *6 + 30 2 *9 + 40 2 *55 + 50 2 *16 + 60 2 *14 )/100 — 42.3 2 = 99.71
Среднее квадратическое отклонение σ(y).
Центр рассеивания случайного вектора
Поскольку, P(X=11,Y=20) = 2≠2·6, то случайные величины X и Y зависимы.
2. Условный закон распределения X.
Условный закон распределения X(Y=20).
P(X=11/Y=20) = 2/6 = 0.33
P(X=16/Y=20) = 4/6 = 0.67
P(X=21/Y=20) = 0/6 = 0
P(X=26/Y=20) = 0/6 = 0
P(X=31/Y=20) = 0/6 = 0
P(X=36/Y=20) = 0/6 = 0
Условное математическое ожидание M[X/Y=20).
M[X/Y=y] = 11*0.33 + 16*0.67 + 21*0 + 26*0 + 31*0 + 36*0 = 14.33
Условная дисперсия D[X/Y=20).
D[X/Y=y] = 11 2 *0.33 + 16 2 *0.67 + 21 2 *0 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 14.33 2 = 5.56
Условный закон распределения X(Y=30).
P(X=11/Y=30) = 0/9 = 0
P(X=16/Y=30) = 6/9 = 0.67
P(X=21/Y=30) = 3/9 = 0.33
P(X=26/Y=30) = 0/9 = 0
P(X=31/Y=30) = 0/9 = 0
P(X=36/Y=30) = 0/9 = 0
Условное математическое ожидание M[X/Y=30).
M[X/Y=y] = 11*0 + 16*0.67 + 21*0.33 + 26*0 + 31*0 + 36*0 = 17.67
Условная дисперсия D[X/Y=30).
D[X/Y=y] = 11 2 *0 + 16 2 *0.67 + 21 2 *0.33 + 26 2 *0 + 31 2 *0 + 36 2 *0 — 17.67 2 = 5.56
Условный закон распределения X(Y=40).
P(X=11/Y=40) = 0/55 = 0
P(X=16/Y=40) = 0/55 = 0
P(X=21/Y=40) = 6/55 = 0.11
P(X=26/Y=40) = 45/55 = 0.82
P(X=31/Y=40) = 4/55 = 0.0727
P(X=36/Y=40) = 0/55 = 0
Условное математическое ожидание M[X/Y=40).
M[X/Y=y] = 11*0 + 16*0 + 21*0.11 + 26*0.82 + 31*0.0727 + 36*0 = 25.82
Условная дисперсия D[X/Y=40).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.11 + 26 2 *0.82 + 31 2 *0.0727 + 36 2 *0 — 25.82 2 = 4.51
Условный закон распределения X(Y=50).
P(X=11/Y=50) = 0/16 = 0
P(X=16/Y=50) = 0/16 = 0
P(X=21/Y=50) = 2/16 = 0.13
P(X=26/Y=50) = 8/16 = 0.5
P(X=31/Y=50) = 6/16 = 0.38
P(X=36/Y=50) = 0/16 = 0
Условное математическое ожидание M[X/Y=50).
M[X/Y=y] = 11*0 + 16*0 + 21*0.13 + 26*0.5 + 31*0.38 + 36*0 = 27.25
Условная дисперсия D[X/Y=50).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0.13 + 26 2 *0.5 + 31 2 *0.38 + 36 2 *0 — 27.25 2 = 10.94
Условный закон распределения X(Y=60).
P(X=11/Y=60) = 0/14 = 0
P(X=16/Y=60) = 0/14 = 0
P(X=21/Y=60) = 0/14 = 0
P(X=26/Y=60) = 4/14 = 0.29
P(X=31/Y=60) = 7/14 = 0.5
P(X=36/Y=60) = 3/14 = 0.21
Условное математическое ожидание M[X/Y=60).
M[X/Y=y] = 11*0 + 16*0 + 21*0 + 26*0.29 + 31*0.5 + 36*0.21 = 30.64
Условная дисперсия D[X/Y=60).
D[X/Y=y] = 11 2 *0 + 16 2 *0 + 21 2 *0 + 26 2 *0.29 + 31 2 *0.5 + 36 2 *0.21 — 30.64 2 = 12.37
3. Условный закон распределения Y.
Условный закон распределения Y(X=11).
P(Y=20/X=11) = 2/2 = 1
P(Y=30/X=11) = 0/2 = 0
P(Y=40/X=11) = 0/2 = 0
P(Y=50/X=11) = 0/2 = 0
P(Y=60/X=11) = 0/2 = 0
Условное математическое ожидание M[Y/X=11).
M[Y/X=x] = 20*1 + 30*0 + 40*0 + 50*0 + 60*0 = 20
Условная дисперсия D[Y/X=11).
D[Y/X=x] = 20 2 *1 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 20 2 = 0
Условный закон распределения Y(X=16).
P(Y=20/X=16) = 4/10 = 0.4
P(Y=30/X=16) = 6/10 = 0.6
P(Y=40/X=16) = 0/10 = 0
P(Y=50/X=16) = 0/10 = 0
P(Y=60/X=16) = 0/10 = 0
Условное математическое ожидание M[Y/X=16).
M[Y/X=x] = 20*0.4 + 30*0.6 + 40*0 + 50*0 + 60*0 = 26
Условная дисперсия D[Y/X=16).
D[Y/X=x] = 20 2 *0.4 + 30 2 *0.6 + 40 2 *0 + 50 2 *0 + 60 2 *0 — 26 2 = 24
Условный закон распределения Y(X=21).
P(Y=20/X=21) = 0/11 = 0
P(Y=30/X=21) = 3/11 = 0.27
P(Y=40/X=21) = 6/11 = 0.55
P(Y=50/X=21) = 2/11 = 0.18
P(Y=60/X=21) = 0/11 = 0
Условное математическое ожидание M[Y/X=21).
M[Y/X=x] = 20*0 + 30*0.27 + 40*0.55 + 50*0.18 + 60*0 = 39.09
Условная дисперсия D[Y/X=21).
D[Y/X=x] = 20 2 *0 + 30 2 *0.27 + 40 2 *0.55 + 50 2 *0.18 + 60 2 *0 — 39.09 2 = 44.63
Условный закон распределения Y(X=26).
P(Y=20/X=26) = 0/57 = 0
P(Y=30/X=26) = 0/57 = 0
P(Y=40/X=26) = 45/57 = 0.79
P(Y=50/X=26) = 8/57 = 0.14
P(Y=60/X=26) = 4/57 = 0.0702
Условное математическое ожидание M[Y/X=26).
M[Y/X=x] = 20*0 + 30*0 + 40*0.79 + 50*0.14 + 60*0.0702 = 42.81
Условная дисперсия D[Y/X=26).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.79 + 50 2 *0.14 + 60 2 *0.0702 — 42.81 2 = 34.23
Условный закон распределения Y(X=31).
P(Y=20/X=31) = 0/17 = 0
P(Y=30/X=31) = 0/17 = 0
P(Y=40/X=31) = 4/17 = 0.24
P(Y=50/X=31) = 6/17 = 0.35
P(Y=60/X=31) = 7/17 = 0.41
Условное математическое ожидание M[Y/X=31).
M[Y/X=x] = 20*0 + 30*0 + 40*0.24 + 50*0.35 + 60*0.41 = 51.76
Условная дисперсия D[Y/X=31).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0.24 + 50 2 *0.35 + 60 2 *0.41 — 51.76 2 = 61.59
Условный закон распределения Y(X=36).
P(Y=20/X=36) = 0/3 = 0
P(Y=30/X=36) = 0/3 = 0
P(Y=40/X=36) = 0/3 = 0
P(Y=50/X=36) = 0/3 = 0
P(Y=60/X=36) = 3/3 = 1
Условное математическое ожидание M[Y/X=36).
M[Y/X=x] = 20*0 + 30*0 + 40*0 + 50*0 + 60*1 = 60
Условная дисперсия D[Y/X=36).
D[Y/X=x] = 20 2 *0 + 30 2 *0 + 40 2 *0 + 50 2 *0 + 60 2 *1 — 60 2 = 0
Ковариация.
cov(X,Y) = M[X·Y] — M[X]·M[Y]
cov(X,Y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 25.3 · 42.3 = 38.11
Если случайные величины независимы, то их ковариации равна нулю. В нашем случае cov(X,Y) ≠ 0.
Коэффициент корреляции.
Центр рассеивания случайного вектора
Центр рассеивания случайного вектора
Уравнение линейной регрессии с y на x имеет вид:
Центр рассеивания случайного вектора
Уравнение линейной регрессии с x на y имеет вид:
Центр рассеивания случайного вектора
Найдем необходимые числовые характеристики.
Выборочные средние:
x = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 42.3
y = (20(2 + 4) + 30(6 + 3) + 40(6 + 45 + 4) + 50(2 + 8 + 6) + 60(4 + 7 + 3))/100 = 25.3
Дисперсии:
σ 2 x = (20 2 (2 + 4) + 30 2 (6 + 3) + 40 2 (6 + 45 + 4) + 50 2 (2 + 8 + 6) + 60 2 (4 + 7 + 3))/100 — 42.3 2 = 99.71
σ 2 y = (11 2 (2) + 16 2 (4 + 6) + 21 2 (3 + 6 + 2) + 26 2 (45 + 8 + 4) + 31 2 (4 + 6 + 7) + 36 2 (3))/100 — 25.3 2 = 24.01
Откуда получаем среднеквадратические отклонения:
σx = 9.99 и σy = 4.9
и ковариация:
Cov(x,y) = (20·11·2 + 20·16·4 + 30·16·6 + 30·21·3 + 40·21·6 + 50·21·2 + 40·26·45 + 50·26·8 + 60·26·4 + 40·31·4 + 50·31·6 + 60·31·7 + 60·36·3)/100 — 42.3 · 25.3 = 38.11
Определим коэффициент корреляции:
Центр рассеивания случайного вектора
Центр рассеивания случайного вектора
Запишем уравнения линий регрессии y(x):
Центр рассеивания случайного вектора
и вычисляя, получаем:
yx = 0.38 x + 9.14
Запишем уравнения линий регрессии x(y):
Центр рассеивания случайного вектора
и вычисляя, получаем:
xy = 1.59 y + 2.15
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (42.3; 25.3) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции.
Центр рассеивания случайного вектора
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=100-m-1 = 98 находим tкрит:
tкрит (n-m-1;α/2) = (98;0.025) = 1.984
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим.

Задание. Количество попаданий пар значений случайных величин X и Y в соответствующие интервалы приведены в таблице. По этим данным найти выборочный коэффициент корреляции и выборочные уравнения прямых линий регрессии Y на X и X на Y .
Решение

Пример. Распределение вероятностей двумерной случайной величины (X, Y) задано таблицей. Найти законы распределения составляющих величин X, Y и коэффициент корреляции p(X, Y).
Скачать решение

Задание. Двумерная дискретная величина (X, Y) задана законом распределения. Найти законы распределения составляющих X и Y, ковариацию и коэффициент корреляции.

Видео:Случайный вектор двумерной случайной величиныСкачать

Случайный вектор двумерной случайной величины

Числовые характеристики векторных случайных величин

Основными числовыми характеристиками двумерного случайного вектора являются математические ожидания тх, ту и дисперсии Dx, Dy (стандартные отклонения ах, оу) его компонент. При этом точка с координатами (тх, ту) на плоскости хОу определяет центр рассеивания случайной точки (X, Y>, а дисперсии Dx, Dy характеризуют степень ее рассеивания в направлении осей Ох и 0у. Однако они не отражают взаимного влияния случайных величин при их совместном рассмотрении, что вызывает необходимость введения дополнительных числовых характеристик.

Моменты распределения случайного вектора

Числовые характеристики случайного вектора вводятся через понятия начальных и центральных моментов.

Начальным моментом (к + s)-zo порядка системы называется математическое ожидание произведения к-й степени случайной величины X на s-ю степень случайной величины Y

Центр рассеивания случайного вектора

В развернутом виде выражение для начального момента + s)-ro порядка случайного вектора записывается:

для дискретного случайного вектора

Центр рассеивания случайного вектора

для непрерывного случайного вектора

Центр рассеивания случайного вектора

На практике наиболее употребительными начальными моментами являются моменты первого порядка Центр рассеивания случайного вектора

Таким образом, начальные моменты первого порядка являются математическими ожиданиями входящих в систему случайных величин.

Центральным моментом + s)-zo порядка случайного вектора называется математическое ожидание произведения k-й и s-u степеней соответствующих центрированных случайных величин

Центр рассеивания случайного вектора

В развернутом виде формулы для центральных моментов + s)-ro порядка запишутся в виде:

для системы дискретных случайных величин

Центр рассеивания случайного вектора

для системы непрерывных случайных величин

Центр рассеивания случайного вектора

На практике наибольшее применение имеют центральные моменты второго порядка

Центр рассеивания случайного вектора

Таким образом, рассмотренные центральные моменты второго порядка являются дисперсиями случайных величин, входящих в систему, и характеризуют индивидуальные рассеивания этих величин относительно центра распределения.

Кроме того к числу основных числовых характеристик двумерного случайного вектора относится еще один смешанный центральный момент второго порядка, называемый моментом связи Кху (его называют также корреляционным моментом или ковариацией), который определяется следующим образом

Центр рассеивания случайного вектора

и может быть либо положительным, либо отрицательным.

Вычисляется момент связи с использованием выражения Центр рассеивания случайного вектораесли случайные величины ХиУ дискретны, или выражения Центр рассеивания случайного вектораесли они непрерывны.

Момент связи является характеристикой частного случая стохастической зависимости — так называемой корреляционной зависимости или корреляции. Она проявляется в том, что при изменении одной случайной величины математическое ожидание другой изменяется по линейному закону в ту же сторону (если Кх у > 0) или в противоположную (если Кг у 0 тоже возрастает (линейно) -— имеет место положительная корреляция, а при Кху — . В результате этого при увеличении (уменьшении) одной из случайных величин X или У другая будет увеличиваться (уменьшаться) лишь в среднем.

Чем в большей степени рассеивается общая составляющая Z по сравнению с составляющими U и V, тем теснее корреляционная связь между случайными величинами X и У, и наоборот, при отсутствии рассеивания Z эти случайные величины становятся чисто независимыми.

Если компоненты X и Y случайного вектора независимы, то они оказываются и некоррелированными. Обратное утверждение не всегда верно, поскольку некоррелированные случайные величины могут быть зависимыми. Это обусловлено тем, что распределение случайной величины является более полной ее вероятностной характеристикой, чем математическое ожидание. Такая особенность присуща, например, компонентам X и Y случайного вектора, рассмотренного в примерах 2.4 и 2.5. Как было показано, они стохастически независимы, но математические ожидания, соответствующие любому условному распределению каждой из них (см. рис. 2.37), равны нулю, т. е. не зависят от того, какие значения принимает другая, так что корреляция между X и Y отсутствует. И момент связи Кх у в условиях этих примеров оказывается равным нулю.

Наряду с моментом связи в качестве характеристики степени корреляции между случайными величинами используется коэффициент корреляции гху, который определяется соотношением Центр рассеивания случайного вектора

Эта характеристика обладает большей наглядностью относительно степени корреляции, чем момент связи, поскольку |г | ^ 1. Если случайные величины X и Y некоррелированы, то гху = 0, а если они связаны линейной функциональной зависимостью, то г 1 = 1 (знак г одинаков со знаком К ).

Следует отметить, что некоррелированными могут быть случайные величины, связанные друг с другом даже фун кцио- нальной, но нелинейной зависимостью.

Числовые характеристики многомерного случайного вектора Центр рассеивания случайного векторазадают совокупность математических ожиданий Центр рассеивания случайного вектораи матрицей Центр рассеивания случайного вектораэлементами которой являются моменты связи всех возможных пар х.х. его компонент. При этом, поскольку из определения момента связи (2.106) следует, что Центр рассеивания случайного вектора

📹 Видео

Непрерыный случайный вектор и его характеристикиСкачать

Непрерыный случайный вектор  и его характеристики

Теория вероятностей #18: системы двух случайных величин, двумерное распределениеСкачать

Теория вероятностей #18: системы двух случайных величин, двумерное распределение

Функция распределения непрерывной случайной величины. Вероятность попадания в интервалСкачать

Функция распределения непрерывной случайной величины. Вероятность попадания в интервал

Функция распределения дискретной случайной величиныСкачать

Функция распределения дискретной случайной величины

Нахождение функции случайного вектораСкачать

Нахождение функции случайного вектора

Функция распределения и плотность распределенияСкачать

Функция распределения и плотность распределения

Нахождение функции распределения для двумерного случайного вектора по плотностиСкачать

Нахождение функции распределения  для двумерного случайного вектора по плотности

Распределение в Статистике за 5 МинутСкачать

Распределение в Статистике за 5 Минут

Двумерное дискретное распределениеСкачать

Двумерное дискретное распределение

Теория вероятностей | Математика TutorOnlineСкачать

Теория вероятностей | Математика TutorOnline

Нормальное Распределение за 6 МинутСкачать

Нормальное Распределение за 6 Минут

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величинСкачать

Теория вероятностей #19: ковариация, корреляция, зависимость двух случайных величин

2.2. Функция распределения и ее характеристики.Скачать

2.2. Функция распределения и ее характеристики.

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минутСкачать

Математическое Ожидание, Дисперсия, Стандартное Отклонение за 5 минут

Ряд распределенияСкачать

Ряд распределения

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.Скачать

Математика без Ху!ни. Ряд распределения дискретной случайной величины. Мат ожидание и дисперсия.

01-02 Случайная величина и её распределениеСкачать

01-02 Случайная величина и её распределение

Теория вероятностей #14: математ. ожидание, дисперсия, медиана, мода, начальные моментыСкачать

Теория вероятностей #14: математ. ожидание, дисперсия, медиана, мода, начальные моменты
Поделиться или сохранить к себе: