Центр описанной окружности лежит вне треугольника если этот треугольник

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов
Центр описанной окружности лежит вне треугольника если этот треугольникСерединный перпендикуляр к отрезку
Центр описанной окружности лежит вне треугольника если этот треугольникОкружность описанная около треугольника
Центр описанной окружности лежит вне треугольника если этот треугольникСвойства описанной около треугольника окружности. Теорема синусов
Центр описанной окружности лежит вне треугольника если этот треугольникДоказательства теорем о свойствах описанной около треугольника окружности

Центр описанной окружности лежит вне треугольника если этот треугольник

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Центр описанной окружности лежит вне треугольника если этот треугольник

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Центр описанной окружности лежит вне треугольника если этот треугольник

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Центр описанной окружности лежит вне треугольника если этот треугольник

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной окружности лежит вне треугольника если этот треугольник

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Центр описанной окружности лежит вне треугольника если этот треугольник

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной окружности лежит вне треугольника если этот треугольник

Полученное противоречие и завершает доказательство теоремы 2

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Центр описанной окружности лежит вне треугольника если этот треугольник

Видео:ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной окружности лежит вне треугольника если этот треугольник,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

Центр описанной окружности лежит вне треугольника если этот треугольник

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

ФигураРисунокСвойство
Серединные перпендикуляры
к сторонам треугольника
Центр описанной окружности лежит вне треугольника если этот треугольникВсе серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.
Посмотреть доказательство
Окружность, описанная около треугольникаЦентр описанной окружности лежит вне треугольника если этот треугольникОколо любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.
Посмотреть доказательство
Центр описанной около остроугольного треугольника окружностиЦентр описанной около остроугольного треугольника окружности лежит внутри треугольника.
Центр описанной около прямоугольного треугольника окружностиЦентр описанной окружности лежит вне треугольника если этот треугольникЦентром описанной около прямоугольного треугольника окружности является середина гипотенузы.
Посмотреть доказательство
Центр описанной около тупоугольного треугольника окружностиЦентр описанной окружности лежит вне треугольника если этот треугольникЦентр описанной около тупоугольного треугольника окружности лежит вне треугольника.
Теорема синусовЦентр описанной окружности лежит вне треугольника если этот треугольник
Площадь треугольникаЦентр описанной окружности лежит вне треугольника если этот треугольник
Радиус описанной окружностиЦентр описанной окружности лежит вне треугольника если этот треугольник
Серединные перпендикуляры к сторонам треугольника
Центр описанной окружности лежит вне треугольника если этот треугольник

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Окружность, описанная около треугольникаЦентр описанной окружности лежит вне треугольника если этот треугольник

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружностиЦентр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружностиЦентр описанной окружности лежит вне треугольника если этот треугольник

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружностиЦентр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Теорема синусовЦентр описанной окружности лежит вне треугольника если этот треугольник

Для любого треугольника справедливы равенства (теорема синусов):

Центр описанной окружности лежит вне треугольника если этот треугольник,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольникаЦентр описанной окружности лежит вне треугольника если этот треугольник

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружностиЦентр описанной окружности лежит вне треугольника если этот треугольник

Для любого треугольника справедливо равенство:

Центр описанной окружности лежит вне треугольника если этот треугольник

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

Задание 16 ОГЭ по математике. Окружность вписана в  равносторонний  треугольник.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Центр описанной окружности лежит вне треугольника если этот треугольник

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной окружности лежит вне треугольника если этот треугольник.

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

l = 2Rsin φ .(1)

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Центр описанной окружности лежит вне треугольника если этот треугольник

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Формула (1) доказана.

Из формулы (1) для вписанного треугольника ABC получаем (рис.7):

Видео:Центр описанной окружности равнобедренного треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Центр описанной окружности равнобедренного треугольника ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Окружность, описанная около треугольника

Видео:2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

Определение окружности, описанной около треугольника

Определение 1. Окружностью, описанной около треугольника называется окружность, проходящей через все три вершины треугольника (Рис.1).

Центр описанной окружности лежит вне треугольника если этот треугольник

При этом треугольник называется треугольником вписанным в окружность .

Видео:№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Теорема об окружности, описанной около треугольника

Теорема 1. Около любого треугольника можно описать окружность.

Центр описанной окружности лежит вне треугольника если этот треугольник

Доказательство. Пусть задан произвольный треугольник ABC (Рис.2). Обозначим точкой O точку пересечения серединных перпендикуляров к его сторонам. Проведем отрезки OA, OB и OC. Поскольку точка O равноудалена от точек A, B и C, то OA=OB=OC. Тогда окружность с центром O и радиусом OA проходит через все три вершины треугольника ABC и, следовательно, является окружностью, описанной около треугольника ABC.Центр описанной окружности лежит вне треугольника если этот треугольник

Из теоремы 1 следует, что центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника.

Замечание 1. Около любого треугольника можно описать только одну окружность.

Доказательство. Допустим, что около треугольника можно описать две окружности. Тогда центр каждой из этих окружностей равноудален от вершин треугольника и совпадает с точкой O пересечения серединных перпендикуляров сторон треугольника. Радиус этих окружностей равен расстоянию от точки O до вершин треугольника. Поэтому эти окружности совпадают.Центр описанной окружности лежит вне треугольника если этот треугольник

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Окружность, описанная около треугольника

Что такое окружность, описанная около треугольника? Что является центром этой окружности? Как расположение центра описанной окружности зависит от вида треугольника?

Окружность называется описанной около треугольника, если все вершины треугольника лежат на окружности.

При этом треугольник называется вписанным в окружность .

Центр описанной окружности лежит вне треугольника если этот треугольник

Расстояние от любой вершины треугольника до центра описанной окружности равно радиусу этой окружности.

Окружность можно описать около любого треугольника.

Центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров к сторонам треугольника (то есть отрезков, перпендикулярных к сторонам треугольника и проходящих через середины этих сторон).

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр окружности, описанной около остроугольного треугольника, лежит внутри треугольника.

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

Центр описанной окружности лежит вне треугольника если этот треугольник

Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника (напротив тупого угла, за большей стороной).

🔥 Видео

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Свойство окружности, описанной около равнобедренного треугольникаСкачать

Свойство окружности, описанной около равнобедренного треугольника

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

Окружность и треугольникСкачать

Окружность и треугольник

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Треугольник и окружность #shortsСкачать

Треугольник и окружность #shorts

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 классСкачать

Окружность, описанная около треугольника. Как найти центр и радиус. Геометрия 7-8 класс

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.
Поделиться или сохранить к себе: