Формула нахождения стороны треугольника

Все формулы для треугольника
Содержание
  1. 1. Как найти неизвестную сторону треугольника
  2. 2. Как узнать сторону прямоугольного треугольника
  3. 3. Формулы сторон равнобедренного треугольника
  4. 4. Найти длину высоты треугольника
  5. Треугольник. Формулы и свойства треугольников.
  6. Типы треугольников
  7. По величине углов
  8. По числу равных сторон
  9. Вершины углы и стороны треугольника
  10. Свойства углов и сторон треугольника
  11. Теорема синусов
  12. Теорема косинусов
  13. Теорема о проекциях
  14. Формулы для вычисления длин сторон треугольника
  15. Медианы треугольника
  16. Свойства медиан треугольника:
  17. Формулы медиан треугольника
  18. Биссектрисы треугольника
  19. Свойства биссектрис треугольника:
  20. Формулы биссектрис треугольника
  21. Высоты треугольника
  22. Свойства высот треугольника
  23. Формулы высот треугольника
  24. Окружность вписанная в треугольник
  25. Свойства окружности вписанной в треугольник
  26. Формулы радиуса окружности вписанной в треугольник
  27. Окружность описанная вокруг треугольника
  28. Свойства окружности описанной вокруг треугольника
  29. Формулы радиуса окружности описанной вокруг треугольника
  30. Связь между вписанной и описанной окружностями треугольника
  31. Средняя линия треугольника
  32. Свойства средней линии треугольника
  33. Периметр треугольника
  34. Формулы площади треугольника
  35. Формула Герона
  36. Равенство треугольников
  37. Признаки равенства треугольников
  38. Первый признак равенства треугольников — по двум сторонам и углу между ними
  39. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  40. Третий признак равенства треугольников — по трем сторонам
  41. Подобие треугольников
  42. Признаки подобия треугольников
  43. Первый признак подобия треугольников
  44. Второй признак подобия треугольников
  45. Третий признак подобия треугольников
  46. Формулы треугольника
  47. Виды треугольников
  48. Свойства треугольника, применимые к любому треугольнику:
  49. Признаки равенства треугольников
  50. Подобные треугольники
  51. Площадь треугольника
  52. Стороны треугольника
  53. Высота треугольника
  54. Биссектрисы в треугольнике
  55. Медиана в треугольнике
  56. Описанная окружность
  57. Вписанная окружность
  58. 💡 Видео

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Формула нахождения стороны треугольника

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Формула нахождения стороны треугольника

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

Формула нахождения стороны треугольника

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Формула нахождения стороны треугольника

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формула нахождения стороны треугольника

Формулы для катета, ( b ):

Формула нахождения стороны треугольника

Формулы для гипотенузы, ( c ):

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Формулы сторон по теореме Пифагора, ( a , b ):

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Формула нахождения стороны треугольника

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Формулы длины равных сторон , (a):

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Видео:Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

Формула нахождения стороны треугольника H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула нахождения стороны треугольника

Формула длины высоты через сторону и угол, ( H ):

Формула нахождения стороны треугольника

Формула длины высоты через сторону и площадь, ( H ):

Формула нахождения стороны треугольника

Формула длины высоты через стороны и радиус, ( H ):

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Треугольник. Формулы и свойства треугольников.

Видео:9 класс, 12 урок, Теорема о площади треугольникаСкачать

9 класс, 12 урок, Теорема о площади треугольника

Типы треугольников

По величине углов

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

По числу равных сторон

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника

Видео:Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)Скачать

Геометрия 9 класс (Урок№14 - Теорема о площади треугольника.)

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Формула нахождения стороны треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c= 2R
sin αsin βsin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Видео:Формулы для медианы треугольникаСкачать

Формулы для медианы треугольника

Медианы треугольника

Формула нахождения стороны треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Видео:9 класс. Геометрия. Площадь треугольника. Формулы для нахождения площади треугольника. Урок #3Скачать

9 класс. Геометрия. Площадь треугольника. Формулы для нахождения площади треугольника. Урок #3

Биссектрисы треугольника

Формула нахождения стороны треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Видео:Найдите площадь треугольника на рисунке ★ Два способа решенияСкачать

Найдите площадь треугольника на рисунке ★ Два способа решения

Высоты треугольника

Формула нахождения стороны треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Окружность вписанная в треугольник

Формула нахождения стороны треугольника

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Окружность описанная вокруг треугольника

Формула нахождения стороны треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Связь между вписанной и описанной окружностями треугольника

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Средняя линия треугольника

Свойства средней линии треугольника

Формула нахождения стороны треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Видео:Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.Скачать

Теорема косинусов. Решить задачи. Найти сторону по двум сторонам и углу. Найти угол по сторонам.

Периметр треугольника

Формула нахождения стороны треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Видео:9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Формулы площади треугольника

Формула нахождения стороны треугольника

Формула Герона

S =a · b · с
4R

Видео:✓ Новая формула площади треугольника | Ботай со мной #108 | Борис ТрушинСкачать

✓ Новая формула площади треугольника | Ботай со мной #108 | Борис Трушин

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Подобие треугольников

Формула нахождения стороны треугольника

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Формулы треугольника

Для расчёта всех основных параметров треугольника воспользуйтесь калькулятором.

Виды треугольников

  1. Формула нахождения стороны треугольникаОстроугольный треугольник — это треугольник, в котором все три угла острые, т.е. меньше 90°.
  2. Прямоугольный треугольник — это треугольник, содержащий прямой угол.

    Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).

    Формула нахождения стороны треугольника
  3. Формула нахождения стороны треугольникаТупоугольный треугольник — это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.(по числу равных сторон)
  4. Формула нахождения стороны треугольникаРавносторонний (правильный) треугольник — это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).
  5. Формула нахождения стороны треугольникаРавнобедренный тругольник — это треугольник, у которого два угла и две стороны равны.
  6. Формула нахождения стороны треугольникаРазносторонний треугольник — это треугольник, в котором все углы, а значит и все стороны попарно различны.

Свойства треугольника, применимые к любому треугольнику:

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)
  3. Сумма углов треугольника равна 180° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60°).
  4. Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
  • $$ AB BC — CA $$
  • $$ BC AB — CA $$
  • $$ CA AB — BC $$

Признаки равенства треугольников

Произвольные треугольники равны, если:

Три стороны одного треугольника равны трем сторонам другого треугольника (по трем сторонам).

AB = DE и BC = EF и AC = DF

Две стороны одного треугольника равны двум сторонам другого треугольника и углы между этими сторонами также равны (по двум сторонам и углу между ними).

AB = DE и BC = EF и ∠ABC = ∠DEF;

BC = EF и AC = DF и ∠BCA = ∠EFD;

AB = DE и AC = DF и ∠CAB = ∠FDE;

Три угла одного треугольника равны трем углам другого треугольника (по трем углам).

∠ABC = ∠DEF и ∠BCA = ∠EFD и ∠CAB = ∠FDE;

Два угла одного треугольника равны двум углам другого треугольника, и любая сторона первого треугольника равна соответствующей стороне другого треугольника.

∠ABC = ∠DEF и ∠BCA = ∠EFD;

∠BCA = ∠EFD и ∠CAB = ∠FDE;

∠CAB = ∠FDE и ∠ABC = ∠DEF;

AB = DE или BC = EF или AC = DF

Прямоугольные треугольники равны, если равны:

    Гипотенуза и острый угол.

BC = EF и ∠ABC = ∠DEF

BC = EF и ∠BCA = ∠EFD;

Катет и противолежащий угол.

AB = DE и ∠BCA = ∠EFD

AC = DF и ∠ABC = ∠DEF

Катет и прилежащий угол.

AB = DE и ∠ABC = ∠DEF

AC = DF и ∠BCA = ∠EFD

AB = DE и AC = DF

Гипотенуза и катет.

AB = DE и BC = EF

AC = DF и BC = EF

Подобные треугольники

Формула нахождения стороны треугольника

Два треугольника являются подобными, если углы одного треугольника равны, углам тругого треугольника, а стороны подобны

Признаки подобия треугольников

  • Два угла одного треугольника равны двум углам другого треугольника.
  • Две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны.
  • Три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.

Свойства подобных треугольников.

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия (Kподобия) $$ <S_over S_> = К_^2 $$
  • Отношение периметров и длин биссектрис, медиан, высот, серединных перпендикуляров равно коэффициенту подобия. т.е. в подобных треугольниках соответствующие линии (высоты, медианы, биссектрисы и т. п.) пропорциональны.

Подобие в прямоугольных треугольниках.

Формула нахождения стороны треугольника

  • Треугольники, образованные высотой, опущенной из прямого угла, являются подобными друг другу
  • Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
  • Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
  • Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.

Площадь треугольника

Формула нахождения стороны треугольника

Формула нахождения стороны треугольника Формула нахождения стороны треугольника
Формула нахождения стороны треугольникаФормула нахождения стороны треугольника
Где:AB,BC,AC – стороны треугольника
h – высота треугольника
α, β, γ– углы треугольника
P – полупериметр
AC – основание треугольника

Площадь произвольного треугольника

Площадь треугольника по формуле Герона

Площадь треугольника по углу и двум сторонам

$$ S = * AB * AC * sin(α) $$ $$ S = * AB * BC * sin(β) $$ $$ S = * AC * BC * sin(γ) $$

Площадь треугольника по двум углам и стороне

Формула нахождения стороны треугольника

Площадь прямоугольного треугольника по катетам

Где:AB,AC – катеты треугольника

$$ S = * AB * AC $$

Формула нахождения стороны треугольника

Площадь равнобедренного треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника

$$ S = * sqrt $$

Формула нахождения стороны треугольника

Площадь равностороннего треугольника

Где:AB,BC,AC – равные стороны треугольника
h – высота треугольника

$$ S = <sqrtover 4> * AB^2 $$ $$ S = <h^2 over sqrt> $$

Стороны треугольника

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
h – высота треугольника
α, β, γ– углы треугольника
P – полупериметр
AC – основание треугольника

Сторона треугольника по двум сторонам и углу

Сторона треугольника по стороне и двум углам

Формула нахождения стороны треугольника

Сторона прямоугольного треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника

$$ AC = BC * cos(β) = BC * sin(α) = AB * tg(α) $$ $$ AB = BC * cos(α) = BC * sin(β) = AC * tg(β) $$ $$ BC = = $$ $$ BC = = $$

Сторона прямоугольного треугольника по теореме Пифагора.

Формула нахождения стороны треугольника

Сторона равнобедренного треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника

$$ AC = 2 * AB * sin() = AB * sqrt $$ $$ AC = 2 * AB * cos(α) $$ $$ AB = = <AC over sqrt> $$ $$ AB = $$

Высота треугольника

Высота – это перпендикуляр, выходящий из любой вершины треугольника, к противоположной стороне или её продолжению для треугольника с тупым углом. Высоты треугольника пересекаются в одной точке

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
h – высота треугольника
P – полупериметр $$ P = $$
α, β, γ – углы треугольника
R — радиус описанной окружности
S — площадь треугольника

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формула длины высоты через сторону и угол

Высота на сторону АС, hAC

$$ h_ = AB * sin(α) = BC * sin(γ) $$

Высота на сторону AB, hAB

$$ h_ = BC * sin(β) = AC * sin(α) $$

Высота на сторону BC, hBC

$$ h_ = AC * sin(γ) = AB * sin(β) $$

Формула длины высоты через сторону и площадь

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формула длины высоты через стороны и радиус

Высота на сторону АС, hAC

Высота на сторону AB, hAB

Высота на сторону BC, hBC

Формулы высоты из прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Формула нахождения стороны треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
BD, DC – отрезки полученные от деления гипотенузы, высотой
α, β– углы треугольника

Формула длины высоты через гипотенузу и острые углы

$$ h = BC * sin(α) * cos(α) = BC * sin(β) * cos(β) $$

Формула длины высоты через катет и угол

$$ h = AB * sin(α) = AC * sin(β) $$

Формула длины высоты через составные отрезки гипотенузы

Биссектрисы в треугольнике

Биссектриса – это отрезок, который делит угол пополам из которого выходит. Точка пересечения всех трех биссектрис треугольника совпадает с центром вписанной окружности.

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
AA1,BB1,CC1 — биссектрисы в треугольнике
α, β, γ– углы треугольника
P – полупериметр $$ P = $$

Длина биссектрисы через две стороны и угол

Длина биссектрисы через полупериметр и стороны

Длина биссектрисы через три стороны

Длина биссектрисы через стороны и отрезки, на которые делит биссектриса

Формула длины биссектрис в прямоугольном треугольнике

Формула нахождения стороны треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
β, γ– острые углы треугольника

Длина биссектрисы из прямого угла, через катеты.

Длина биссектрисы из прямого угла, через гипотенузу и угол

Длина биссектрисы через катет и угол

Длина биссектрисы через катет и гипотенузу

Длина биссектрисы равнобедренного треугольника

Формула нахождения стороны треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
α – равные углы при основании треугольника
β – угол образованный равными сторонами треугольника

Длина биссектрисы через стороны и угол, равнобедренного треугольника

$$ BB_1 = AB * sin(α) = * tg(α) = AB * cos() $$ $$ BB_1 = AB * sqrt <over 2> $$

Длина биссектрисы через стороны, равнобедренного треугольника

Длина биссектрисы равностороннего треугольника

Формула нахождения стороны треугольника

Где:AB,BC,AC – равные стороны треугольника

$$ BB_1 = <AB * sqrtover 2> $$

Медиана в треугольнике

Медиана – это отрезок, который выходит из вершины и делит противоположную сторону пополам. Медиана делит треугольник на два равных по площади треугольника.

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
AA1,BB1,CC1 — медианы в треугольнике
α, β, γ– углы треугольника

Длина медианы через три стороны

Длина медианы через две стороны и угол между ними

Длина медианы в прямоугольном треугольнике, выходящая из прямого угла.

Формула нахождения стороны треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
AA1,BB1,CC1 — медианы в треугольнике
β, γ– острые углы треугольника

Длина медианы в прямоугольном треугольнике, выходящая из прямого угла, равна радиусу описанной окружности, а середина гипотенузы является центром описанной окружности

Длина медианы через катеты

Длина медианы через катет и острый угол

Описанная окружность

Радиус описанной окружности произвольного треугольника по сторонам

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
P – полупериметр $$ P = $$
R — радиус описанной окружности

$$ R = <AB * BC * CA over 4 * sqrt

> $$

Радиус описанной окружности равностороннего треугольника по стороне или высоте

Формула нахождения стороны треугольника

Где:AB,BC,AC – равные стороны треугольника
h – высота треугольника
R — радиус описанной окружности

$$ R = <AB over sqrt> $$ $$ R = $$

Радиус описанной окружности равнобедренного треугольника по сторонам

Формула нахождения стороны треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
h – высота треугольника
R — радиус описанной окружности

$$ R = <AB^2 over sqrt> $$

Радиус описанной окружности прямоугольного треугольника по катетам

Формула нахождения стороны треугольника

Где:AB,AC – катеты треугольника
BC – гипотенуза треугольника
R — радиус описанной окружности

$$ R = * sqrt = $$

Длина окружности, L

Площадь окружности, S

Вписанная окружность

Радиус вписанной окружности произвольного треугольника по сторонам

Формула нахождения стороны треугольника

Где:AB,BC,AC – стороны треугольника
P – полупериметр $$ P = $$
R — радиус вписанной окружности

$$ R = sqrt <

over P> $$

Радиус вписанной окружности в равносторонний треугольник

Формула нахождения стороны треугольника

Где:AB,BC,AC – равные стороны треугольника
R — радиус вписанной окружности

$$ R = <AB over 2 * sqrt> $$

Радиус вписанной окружности равнобедренного треугольник

Формула нахождения стороны треугольника

Где:AB,BC – равные стороны треугольника
AC – основание треугольника
R — радиус вписанной окружности
h – высота треугольника
α – угол при основании треугольника

$$ R = * sqrt <> $$ $$ R = AB * = AB * cos(α) * tan() $$ $$ R = * = * tan() $$ $$ R = <AC * h over AC + sqrt> $$ $$ R = <h * sqrtover AB + sqrt> $$

Радиус вписанной окружности в прямоугольном треугольнике

💡 Видео

9 класс, 13 урок, Теорема синусовСкачать

9 класс, 13 урок, Теорема синусов
Поделиться или сохранить к себе: