Тригонометрическая окружность с арктангенсом

Обратная тригонометрическая функция: Арктангенс (arctg)

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Определение

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.

Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).

Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :

Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.

Например:

arctg 1 = tg -1 1 = 45° = π/4 рад

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

График арктангенса

Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:

Тригонометрическая окружность с арктангенсом

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Свойства арктангенса

Ниже в табличном виде представлены основные свойства арктангенса с формулами.

Видео:Занятие 7. Арктангенс и арккотангенс. Основы тригонометрииСкачать

Занятие 7. Арктангенс и арккотангенс. Основы тригонометрии

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число , такое, что Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Тригонометрическая окружность с арктангенсом

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса — отрезок Область значений — отрезок .

Тригонометрическая окружность с арктангенсом

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка , синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: — это такое число из отрезка , синус которого равен . Да, это

0
0

Строим график функции

Тригонометрическая окружность с арктангенсом

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное — , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

Тригонометрическая окружность с арктангенсом

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

0
0

Вот график арккосинуса:

Тригонометрическая окружность с арктангенсом

1. Область определения

2. Область значений

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса — промежуток Область значений — интервал .

Тригонометрическая окружность с арктангенсом

Почему в определении арктангенса исключены концы промежутка — точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график — уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

— Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений — интервал

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

Тригонометрическая окружность с арктангенсом

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

Тригонометрическая окружность с арктангенсом

1. Область определения

2. Область значений

3. Функция — общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Арктангенс и решение уравнения tg x=a

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Тригонометрическая окружность с арктангенсом

На этом уроке мы познакомимся с понятием арктангенса. В начале рассмотрим график функции у = tg t на наименьшем положительном периоде, вспомним ее свойства и сформулируем прямую и обратную задачу для нашей функции. Дадим определение арктангенса как решения обратной задачи. Далее рассмотрим нахождение арктангенса на числовой окружности с помощью линии тангенсов. Докажем важное свойство арктангенса: арктангенс от минус а равен минус арктангенсу а. В конце урока решим несколько задач вычислительного и сравнительного типа, иллюстрируя решение на графике и на круге.

📸 Видео

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать

Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Тригонометрическая окружность для непонимающихСкачать

Тригонометрическая окружность для непонимающих

Тригонометрическая окружность tg x и ctg xСкачать

Тригонометрическая окружность tg x и ctg x

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математикеСкачать

Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математике

Занятие 4. Арксинус и арккосинус. Основы тригонометрииСкачать

Занятие 4. Арксинус и арккосинус. Основы тригонометрии

Тригонометрическая окружность за МИНУТУ💣Скачать

Тригонометрическая  окружность за МИНУТУ💣

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Находим арктангенс. Алгебра 10 классСкачать

Находим арктангенс. Алгебра 10 класс

Тригонометрическая окружностьСкачать

Тригонометрическая окружность

Тригонометрические функции и их знакиСкачать

Тригонометрические функции и их знаки
Поделиться или сохранить к себе: